【深度学习实践(三)】RNN实现股票预测

简介: 【深度学习实践(三)】RNN实现股票预测

👉引言💎


铭记于心
🎉✨🎉我唯一知道的,便是我一无所知🎉✨🎉

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。 热爱写作,愿意让自己成为更好的人............


【深度学习实践(三)】RNN实现股票预测


1 RNN是什么


1.1 RNN的基本概念


RNN是一个不断循环的神经网络,它在循环的过程当中是具有记忆性的,可以根据前面的输入状态循环对模型进行适当的调整

  • 比如时序神经网络:
    处理“具有时序关系的输入序列”。也就是说,一个输入对应的输出,还取决于其“上文”的应用场合,如文字分类,自然语言处理 *image.png


1.2 RNN的应用场景


RNN循环神经网络的应用范围非常广泛,举出部分例子:

  • Many To One
  • 情感分析。输入一段评论,输出该段评论是好评还是差评。
  • 关键信息提取。输入一篇文章,输出该文章中的关键信息。
  • Many To Many
  • 语音识别。输入一段语音,输出对应的文字。
  • 语言翻译。输入一段某国的文字或语音,输出一段另一个国家的对应意思的文字或语音。
  • 聊天机器人。输入一句话,输出回答。
  • 其他
  • 句子文法结果分析。输入一个句子,输出该句子的文法结构。
  • 句子自编码


2 前期准备


  • 设置GPU
    (模型的训练通常需要加工处理大量数据,这时候GPU的强大算力就体现出来了,一块好的GPU就像一个好鼎,就能练出来更好的丹药)这里使用TensorFlow深度学习框架,故使用以下方法进行GPU的配置
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
  • 数据预处理将加载好的数据进行预处理
  • 加载数据,将数据集加载到内存中
  • 用平均值或者0代替空值,奇异值;
  • 归一化,消去量纲影响等


3 模型训练与预测


  • 神经网络程序大概分为如下几个步骤:
  1. 选择模型
  2. 构建网络层
  3. 编译
  4. 训练
  5. 预测


3.1 构建模型


model = tf.keras.Sequential([
    SimpleRNN(100, return_sequences=True), #布尔值。是返回输出序列中的最后一个输出,还是全部序列。
    Dropout(0.1),                         #防止过拟合
    SimpleRNN(100),
    Dropout(0.1),
    Dense(1)
])


3.2 激活模型


model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
              loss='mean_squared_error')  # 损失函数用均方误差


3.3 训练模型


history = model.fit(x_train, y_train, 
                    batch_size=64, 
                    epochs=20, 
                    validation_data=(x_test, y_test), 
                    validation_freq=1)      
model.summary()

image.png


  • 预测


predicted_stock_price = model.predict(x_test)                       
predicted_stock_price = sc.inverse_transform(predicted_stock_price) 
real_stock_price = sc.inverse_transform(test_set[60:])  

image.png


  • 评估


"""
MSE  :均方误差    ----->  预测值减真实值求平方后求均值
RMSE :均方根误差  ----->  对均方误差开方
MAE  :平均绝对误差----->  预测值减真实值求绝对值后求均值
R2   :决定系数,可以简单理解为反映模型拟合优度的重要的统计量
详细介绍可以参考文章:https://blog.csdn.net/qq_38251616/article/details/107997435
"""
MSE   = metrics.mean_squared_error(predicted_stock_price, real_stock_price)
RMSE  = metrics.mean_squared_error(predicted_stock_price, real_stock_price)**0.5
MAE   = metrics.mean_absolute_error(predicted_stock_price, real_stock_price)
R2    = metrics.r2_score(predicted_stock_price, real_stock_price)
print('均方误差: %.5f' % MSE)
print('均方根误差: %.5f' % RMSE)
print('平均绝对误差: %.5f' % MAE)
print('R2: %.5f' % R2)

🌹写在最后💖

路漫漫其修远兮,吾将上下而求索!伙伴们,再见!🌹🌹🌹


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
204 6
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘人工智能:深度学习的奥秘与实践
在本文中,我们将深入浅出地探索深度学习的神秘面纱。从基础概念到实际应用,你将获得一份简明扼要的指南,助你理解并运用这一前沿技术。我们避开复杂的数学公式和冗长的论述,以直观的方式呈现深度学习的核心原理和应用实例。无论你是技术新手还是有经验的开发者,这篇文章都将为你打开一扇通往人工智能新世界的大门。
|
2月前
|
机器学习/深度学习 算法 TensorFlow
深度学习中的自编码器:从理论到实践
在这篇文章中,我们将深入探讨深度学习的一个重要分支——自编码器。自编码器是一种无监督学习算法,它可以学习数据的有效表示。我们将首先介绍自编码器的基本概念和工作原理,然后通过一个简单的Python代码示例来展示如何实现一个基本的自编码器。最后,我们将讨论自编码器的一些变体,如稀疏自编码器和降噪自编码器,以及它们在实际应用中的优势。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘AI:深度学习的奥秘与实践
本文将深入浅出地探讨人工智能中的一个重要分支——深度学习。我们将从基础概念出发,逐步揭示深度学习的原理和工作机制。通过生动的比喻和实际代码示例,本文旨在帮助初学者理解并应用深度学习技术,开启AI之旅。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出深度学习:从理论到实践的探索之旅
在人工智能的璀璨星空中,深度学习如同一颗耀眼的新星,以其强大的数据处理能力引领着技术革新的浪潮。本文将带您走进深度学习的核心概念,揭示其背后的数学原理,并通过实际案例展示如何应用深度学习模型解决现实世界的问题。无论您是初学者还是有一定基础的开发者,这篇文章都将为您提供宝贵的知识和启发。
75 5
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
465 7
|
3月前
|
机器学习/深度学习 自然语言处理 语音技术
深入探索深度学习中的兼容性函数:从原理到实践
深入探索深度学习中的兼容性函数:从原理到实践
49 3
|
3月前
|
机器学习/深度学习 自然语言处理 网络架构
深度学习中的正则化技术:从理论到实践
在深度学习的海洋中,正则化技术如同灯塔指引着模型训练的方向。本文将深入探讨正则化的核心概念、常见类型及其在防止过拟合中的应用。通过实例分析,我们将展示如何在实践中运用这些技术以提升模型的泛化能力。
|
4月前
|
机器学习/深度学习 调度 计算机视觉
深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究
本文探讨了多种学习率调度策略在神经网络训练中的应用,强调了选择合适学习率的重要性。文章介绍了阶梯式衰减、余弦退火、循环学习率等策略,并分析了它们在不同实验设置下的表现。研究表明,循环学习率和SGDR等策略在提高模型性能和加快训练速度方面表现出色,而REX调度则在不同预算条件下表现稳定。这些策略为深度学习实践者提供了实用的指导。
120 2
深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究

热门文章

最新文章