Yolov5:强大到你难以想象──新冠疫情下的口罩检测

简介: Yolov5:强大到你难以想象──新冠疫情下的口罩检测

一、Yolov5简介

2020年6月25日,Ultralytics发布了YOLOV5 的第一个正式版本,其性能与YOLO V4不相伯仲,同样也是现今最先进的对象检测技术,并在推理速度上是目前最强,yolov5按大小分为四个模型yolov5s、yolov5m、yolov5l、yolov5x。其中的复杂的网络结构、数学基础在这里就不一一介绍(太复杂,笔者也只能看个大概,很难说清楚),在这里,引用另一个博主的Yolov5的网络结构图:Yolov5网络结构图,以及一篇流程图:Yolov5操作流程图

YOLOv5是YOLO系列的一个延申,您也可以看作是基于YOLOv3、YOLOv4的改进作品。YOLOv5没有相应的论文说明,但是作者在Github上积极地开放源代码,通过对源码分析,我们也能很快地了解YOLOv5的网络架构和工作原理。


二、项目背景

当前新冠疫情仍然严重,在公众场合需要佩戴口罩已经成为常识。新型冠状病毒的主要传播途径就是飞沫传播,戴上口罩就可以有效的阻隔病毒的传播。口罩是预防呼吸道传染病的重要防线,可以降低新型冠状病毒感染风险。口罩不仅可以防止病人喷射飞沫,降低飞沫量和喷射速度,还可以阻挡含病毒的飞沫核,防止佩戴者吸入。有研究显示,只要双方都佩戴口罩且间隔1.8米以上,造成感染的几率几乎为0。

但是,在我们周围总有人不喜欢戴口罩,无论是进出商场、教室、街道、地下停车场等公共场所,还是在人员密集的会议室里,他们都不喜欢口罩的“束缚”。运用Yolov5训练出来的口罩检测模型进行检测,就能准确实时的找到哪些人带了口罩、哪些人没带。可以做的定点提醒,或者是阻止他出入公共场所。节省了人力,大幅提高效率。

三、检测效果

因为我是拿CPU运行的,速度很慢,epoch取了5次,即每张图片学习了5次,一共有1200组训练数据,训练了三个半小时,之后在项目的实际应用的时候会考虑修改为GPU运行,这样速度可以提高很多。我们直接看模型的检测效果及视频的检测效果:

 

通过上述例子可以看到,仅经过五次学习,识别的精度已经很高了,再一次感叹Yolov5的强大!

四、数据集处理 添加标签

训练的数据集总共有1200张戴口罩的和没戴口罩的照片,验证集有400张照片,对应的标签也已经存在相应的文件夹下。这里重点讲解下数据集标签的标注,我觉得这是Yolov5特别亲民的一个地方,也是他的强大之处——你可以标记你任何想标记的地方!

可以在你的虚拟环境中进入labelImg,这是他的界面。左侧open Dir可以打开数据集的文件夹,Change Save Dir是你的保存路径,Next和Prev Image分别是上一张和下一张图片。重点来了:Create RectBox绘制一个矩形框将你需要框选的对象框选出来,并添加标签。我这里框选了红色衣服的女士,并给她添加标签mask,说明她带了口罩。接着标记第二个人,直到所有的人都标记完之后,可以得到一个该图片的txt文件:

我们一行一行看,每一行代表着图片里面的一个人,第一个数字 0说明是第一类,在这里就是带了口罩,后两个数字是矩形框的的中心点坐标,最后两个数字是矩形框的长宽。在训练模型时要将原图片和对应的标签一起传入进去作为一组训练集,这样机器才能够慢慢认识一个人有没有戴口罩。

五、结果分析

从图中可以看出,仅训练了5次(即每张图片机器学习了5遍), 对mask的识别精度可以达到0.564,对face的识别精度可以达到0.904,实在是恐怖!

六、总结

Yolov5真的是一个利器,确实要比CNN强大很多,里面复杂的神经网络函数复杂交错。这个开源项目让我再一次感受到了机器学习的强大,你可以让计算机认出他任何想要认出的东西,且识别的精度很高。比如说

  • 火灾检测,一片森林或楼道只要一有火焰的模样,计算机就能分辨出并报警,这样可以有效地减少经济损失甚至挽救生命。
  • 安检检测,现在的地铁飞机安检,都是人观察扫描仪扫描出来的图像,看有没有可疑物体,如果用Yolov5训练出识别危险物品的模型,就能减少大量人力,且准确率可能比人还要高。
  • 无人驾驶。通过yolov5检测车道和行人车辆,控制整个车子运转,只要有足够多的数据集,这个领域还是很值得探索的。

这次实战让我深深明白了:人工智能 = 人工+智能,先有人工才有智能,人工筛选标注数据集甚至会比搭建整个机器学习框架所用的时间更长,数据集的宝贵一不言而喻。每天我们看似习以为常的图片验证码(选出图片中的红绿灯)其实都在把我们当成他们免费的劳动力,在帮他们给图片添加标签,哈哈。未来的世界很广阔,人工智能的世界依旧很精彩,继续加油!如果你对本篇文章感兴趣也欢迎私信或者评论区交流哦!

想要继续深入研究的小伙伴可以看这几个文章:

手把手教你使用YOLOV5训练自己的目标检测模型-口罩检测-视频教程

手把手教你使用YOLOV5训练自己的目标检测模型

电脑是如何学会瞬间识别物体的

七、模型代码(部分)

源于博主肆十二:手把手教你使用YOLOV5训练自己的目标检测模型,链接如上

训练模型:

1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2. """
3. Train a YOLOv5 model on a custom dataset
4. 
5. Usage:
6.     $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
7. """
8. import argparse
9. import math
10. import os
11. import random
12. import sys
13. import time
14. from copy import deepcopy
15. from datetime import datetime
16. from pathlib import Path
17. 
18. import numpy as np
19. import torch
20. import torch.distributed as dist
21. import torch.nn as nn
22. import yaml
23. from torch.cuda import amp
24. from torch.nn.parallel import DistributedDataParallel as DDP
25. from torch.optim import SGD, Adam, lr_scheduler
26. from tqdm import tqdm
27. 
28. FILE = Path(__file__).resolve()
29. ROOT = FILE.parents[0]  # YOLOv5 root directory
30. if str(ROOT) not in sys.path:
31.     sys.path.append(str(ROOT))  # add ROOT to PATH
32. ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
33. 
34. import val  # for end-of-epoch mAP
35. from models.experimental import attempt_load
36. from models.yolo import Model
37. from utils.autoanchor import check_anchors
38. from utils.autobatch import check_train_batch_size
39. from utils.callbacks import Callbacks
40. from utils.datasets import create_dataloader
41. from utils.downloads import attempt_download
42. from utils.general import (LOGGER, NCOLS, check_dataset, check_file, check_git_status, check_img_size,
43.                            check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,
44.                            init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
45.                            one_cycle, print_args, print_mutation, strip_optimizer)
46. from utils.loggers import Loggers
47. from utils.loggers.wandb.wandb_utils import check_wandb_resume
48. from utils.loss import ComputeLoss
49. from utils.metrics import fitness
50. from utils.plots import plot_evolve, plot_labels
51. from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
52. 
53. LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
54. RANK = int(os.getenv('RANK', -1))
55. WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
56. 
57. 
58. def train(hyp,  # path/to/hyp.yaml or hyp dictionary
59.           opt,
60.           device,
61.           callbacks
62. ):
63.     save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, = \
64.         Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
65.         opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
66. 
67. # Directories
68.     w = save_dir / 'weights'  # weights dir
69.     (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
70.     last, best = w / 'last.pt', w / 'best.pt'
71. 
72. # Hyperparameters
73. if isinstance(hyp, str):
74. with open(hyp, errors='ignore') as f:
75.             hyp = yaml.safe_load(f)  # load hyps dict
76.     LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
77. 
78. # Save run settings
79. with open(save_dir / 'hyp.yaml', 'w') as f:
80.         yaml.safe_dump(hyp, f, sort_keys=False)
81. with open(save_dir / 'opt.yaml', 'w') as f:
82.         yaml.safe_dump(vars(opt), f, sort_keys=False)
83.     data_dict = None
84. 
85. # Loggers
86. if RANK in [-1, 0]:
87.         loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance
88. if loggers.wandb:
89.             data_dict = loggers.wandb.data_dict
90. if resume:
91.                 weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
92. 
93. # Register actions
94. for k in methods(loggers):
95.             callbacks.register_action(k, callback=getattr(loggers, k))
96. 
97. # Config
98.     plots = not evolve  # create plots
99.     cuda = device.type != 'cpu'
100.     init_seeds(1 + RANK)
101. with torch_distributed_zero_first(LOCAL_RANK):
102.         data_dict = data_dict or check_dataset(data)  # check if None
103.     train_path, val_path = data_dict['train'], data_dict['val']
104.     nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
105.     names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
106. assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # check
107.     is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset
108. 
109. # Model
110.     check_suffix(weights, '.pt')  # check weights
111.     pretrained = weights.endswith('.pt')
112. if pretrained:
113. with torch_distributed_zero_first(LOCAL_RANK):
114.             weights = attempt_download(weights)  # download if not found locally
115.         ckpt = torch.load(weights, map_location=device)  # load checkpoint
116.         model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
117.         exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
118.         csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
119.         csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
120.         model.load_state_dict(csd, strict=False)  # load
121.         LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
122. else:
123.         model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
124. 
125. # Freeze
126.     freeze = [f'model.{x}.' for x in range(freeze)]  # layers to freeze
127. for k, v in model.named_parameters():
128.         v.requires_grad = True  # train all layers
129. if any(x in k for x in freeze):
130.             LOGGER.info(f'freezing {k}')
131.             v.requires_grad = False
132. 
133. # Image size
134.     gs = max(int(model.stride.max()), 32)  # grid size (max stride)
135.     imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple
136. 
137. # Batch size
138. if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
139.         batch_size = check_train_batch_size(model, imgsz)
140. 
141. # Optimizer
142.     nbs = 64  # nominal batch size
143.     accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
144.     hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
145.     LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
146. 
147.     g0, g1, g2 = [], [], []  # optimizer parameter groups
148. for v in model.modules():
149. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
150.             g2.append(v.bias)
151. if isinstance(v, nn.BatchNorm2d):  # weight (no decay)
152.             g0.append(v.weight)
153. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with decay)
154.             g1.append(v.weight)
155. 
156. if opt.adam:
157.         optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
158. else:
159.         optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
160. 
161.     optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']})  # add g1 with weight_decay
162.     optimizer.add_param_group({'params': g2})  # add g2 (biases)
163.     LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
164. f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
165. del g0, g1, g2
166. 
167. # Scheduler
168. if opt.linear_lr:
169.         lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
170. else:
171.         lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
172.     scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)
173. 
174. # EMA
175.     ema = ModelEMA(model) if RANK in [-1, 0] else None
176. 
177. # Resume
178.     start_epoch, best_fitness = 0, 0.0
179. if pretrained:
180. # Optimizer
181. if ckpt['optimizer'] is not None:
182.             optimizer.load_state_dict(ckpt['optimizer'])
183.             best_fitness = ckpt['best_fitness']
184. 
185. # EMA
186. if ema and ckpt.get('ema'):
187.             ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
188.             ema.updates = ckpt['updates']
189. 
190. # Epochs
191.         start_epoch = ckpt['epoch'] + 1
192. if resume:
193. assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
194. if epochs < start_epoch:
195.             LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
196.             epochs += ckpt['epoch']  # finetune additional epochs
197. 
198. del ckpt, csd
199. 
200. # DP mode
201. if cuda and RANK == -1 and torch.cuda.device_count() > 1:
202.         LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
203. 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
204.         model = torch.nn.DataParallel(model)
205. 
206. # SyncBatchNorm
207. if opt.sync_bn and cuda and RANK != -1:
208.         model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
209.         LOGGER.info('Using SyncBatchNorm()')
210. 
211. # Trainloader
212.     train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
213.                                               hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK,
214.                                               workers=workers, image_weights=opt.image_weights, quad=opt.quad,
215.                                               prefix=colorstr('train: '), shuffle=True)
216.     mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label class
217.     nb = len(train_loader)  # number of batches
218. assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
219. 
220. # Process 0
221. if RANK in [-1, 0]:
222.         val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
223.                                        hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1,
224.                                        workers=workers, pad=0.5,
225.                                        prefix=colorstr('val: '))[0]
226. 
227. if not resume:
228.             labels = np.concatenate(dataset.labels, 0)
229. # c = torch.tensor(labels[:, 0])  # classes
230. # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
231. # model._initialize_biases(cf.to(device))
232. if plots:
233.                 plot_labels(labels, names, save_dir)
234. 
235. # Anchors
236. if not opt.noautoanchor:
237.                 check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
238.             model.half().float()  # pre-reduce anchor precision
239. 
240.         callbacks.run('on_pretrain_routine_end')
241. 
242. # DDP mode
243. if cuda and RANK != -1:
244.         model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
245. 
246. # Model attributes
247.     nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
248.     hyp['box'] *= 3 / nl  # scale to layers
249.     hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
250.     hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
251.     hyp['label_smoothing'] = opt.label_smoothing
252.     model.nc = nc  # attach number of classes to model
253.     model.hyp = hyp  # attach hyperparameters to model
254.     model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
255.     model.names = names
256. 
257. # Start training
258.     t0 = time.time()
259.     nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
260. # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
261.     last_opt_step = -1
262.     maps = np.zeros(nc)  # mAP per class
263.     results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
264.     scheduler.last_epoch = start_epoch - 1  # do not move
265.     scaler = amp.GradScaler(enabled=cuda)
266.     stopper = EarlyStopping(patience=opt.patience)
267.     compute_loss = ComputeLoss(model)  # init loss class
268.     LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
269. f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
270. f"Logging results to {colorstr('bold', save_dir)}\n"
271. f'Starting training for {epochs} epochs...')
272. for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
273.         model.train()
274. 
275. # Update image weights (optional, single-GPU only)
276. if opt.image_weights:
277.             cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
278.             iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
279.             dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
280. 
281. # Update mosaic border (optional)
282. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
283. # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
284. 
285.         mloss = torch.zeros(3, device=device)  # mean losses
286. if RANK != -1:
287.             train_loader.sampler.set_epoch(epoch)
288.         pbar = enumerate(train_loader)
289.         LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
290. if RANK in [-1, 0]:
291.             pbar = tqdm(pbar, total=nb, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
292.         optimizer.zero_grad()
293. for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
294.             ni = i + nb * epoch  # number integrated batches (since train start)
295.             imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0
296. 
297. # Warmup
298. if ni <= nw:
299.                 xi = [0, nw]  # x interp
300. # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
301.                 accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
302. for j, x in enumerate(optimizer.param_groups):
303. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
304.                     x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
305. if 'momentum' in x:
306.                         x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
307. 
308. # Multi-scale
309. if opt.multi_scale:
310.                 sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
311.                 sf = sz / max(imgs.shape[2:])  # scale factor
312. if sf != 1:
313.                     ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
314.                     imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
315. 
316. # Forward
317. with amp.autocast(enabled=cuda):
318.                 pred = model(imgs)  # forward
319.                 loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
320. if RANK != -1:
321.                     loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
322. if opt.quad:
323.                     loss *= 4.
324. 
325. # Backward
326.             scaler.scale(loss).backward()
327. 
328. # Optimize
329. if ni - last_opt_step >= accumulate:
330.                 scaler.step(optimizer)  # optimizer.step
331.                 scaler.update()
332.                 optimizer.zero_grad()
333. if ema:
334.                     ema.update(model)
335.                 last_opt_step = ni
336. 
337. # Log
338. if RANK in [-1, 0]:
339.                 mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
340.                 mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
341.                 pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
342. f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
343.                 callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
344. # end batch ------------------------------------------------------------------------------------------------
345. 
346. # Scheduler
347.         lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
348.         scheduler.step()
349. 
350. if RANK in [-1, 0]:
351. # mAP
352.             callbacks.run('on_train_epoch_end', epoch=epoch)
353.             ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
354.             final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
355. if not noval or final_epoch:  # Calculate mAP
356.                 results, maps, _ = val.run(data_dict,
357.                                            batch_size=batch_size // WORLD_SIZE * 2,
358.                                            imgsz=imgsz,
359.                                            model=ema.ema,
360.                                            single_cls=single_cls,
361.                                            dataloader=val_loader,
362.                                            save_dir=save_dir,
363.                                            plots=False,
364.                                            callbacks=callbacks,
365.                                            compute_loss=compute_loss)
366. 
367. # Update best mAP
368.             fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
369. if fi > best_fitness:
370.                 best_fitness = fi
371.             log_vals = list(mloss) + list(results) + lr
372.             callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
373. 
374. # Save model
375. if (not nosave) or (final_epoch and not evolve):  # if save
376.                 ckpt = {'epoch': epoch,
377. 'best_fitness': best_fitness,
378. 'model': deepcopy(de_parallel(model)).half(),
379. 'ema': deepcopy(ema.ema).half(),
380. 'updates': ema.updates,
381. 'optimizer': optimizer.state_dict(),
382. 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
383. 'date': datetime.now().isoformat()}
384. 
385. # Save last, best and delete
386.                 torch.save(ckpt, last)
387. if best_fitness == fi:
388.                     torch.save(ckpt, best)
389. if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
390.                     torch.save(ckpt, w / f'epoch{epoch}.pt')
391. del ckpt
392.                 callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
393. 
394. # Stop Single-GPU
395. if RANK == -1 and stopper(epoch=epoch, fitness=fi):
396. break
397. 
398. # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
399. # stop = stopper(epoch=epoch, fitness=fi)
400. # if RANK == 0:
401. #    dist.broadcast_object_list([stop], 0)  # broadcast 'stop' to all ranks
402. 
403. # Stop DPP
404. # with torch_distributed_zero_first(RANK):
405. # if stop:
406. #    break  # must break all DDP ranks
407. 
408. # end epoch ----------------------------------------------------------------------------------------------------
409. # end training -----------------------------------------------------------------------------------------------------
410. if RANK in [-1, 0]:
411.         LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
412. for f in last, best:
413. if f.exists():
414.                 strip_optimizer(f)  # strip optimizers
415. if f is best:
416.                     LOGGER.info(f'\nValidating {f}...')
417.                     results, _, _ = val.run(data_dict,
418.                                             batch_size=batch_size // WORLD_SIZE * 2,
419.                                             imgsz=imgsz,
420.                                             model=attempt_load(f, device).half(),
421.                                             iou_thres=0.65 if is_coco else 0.60,  # best pycocotools results at 0.65
422.                                             single_cls=single_cls,
423.                                             dataloader=val_loader,
424.                                             save_dir=save_dir,
425.                                             save_json=is_coco,
426.                                             verbose=True,
427.                                             plots=True,
428.                                             callbacks=callbacks,
429.                                             compute_loss=compute_loss)  # val best model with plots
430. if is_coco:
431.                         callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
432. 
433.         callbacks.run('on_train_end', last, best, plots, epoch, results)
434.         LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
435. 
436.     torch.cuda.empty_cache()
437. return results
438. 
439. 
440. # 明天把这些模型都试试效果先,一波波给他训练完毕,找个公开的数据集测试一下。
441. def parse_opt(known=False):
442.     parser = argparse.ArgumentParser()
443.     parser.add_argument('--weights', type=str, default=ROOT / 'pretrained/yolov5s.pt', help='initial weights path')
444.     parser.add_argument('--cfg', type=str, default=ROOT / 'models/yolov5s.yaml', help='model.yaml path')
445.     parser.add_argument('--data', type=str, default=ROOT / 'data/data.yaml', help='dataset.yaml path')
446.     parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
447.     parser.add_argument('--epochs', type=int, default=300)
448.     parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs, -1 for autobatch')
449.     parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
450.     parser.add_argument('--rect', action='store_true', help='rectangular training')
451.     parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
452.     parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
453.     parser.add_argument('--noval', action='store_true', help='only validate final epoch')
454.     parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
455.     parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
456.     parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
457.     parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
458.     parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
459.     parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
460. # parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
461.     parser.add_argument('--multi-scale', default=True, help='vary img-size +/- 50%%')
462.     parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
463.     parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
464.     parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
465.     parser.add_argument('--workers', type=int, default=0, help='max dataloader workers (per RANK in DDP mode)')
466.     parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
467.     parser.add_argument('--name', default='exp', help='save to project/name')
468.     parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
469.     parser.add_argument('--quad', action='store_true', help='quad dataloader')
470.     parser.add_argument('--linear-lr', action='store_true', help='linear LR')
471.     parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
472.     parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
473.     parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
474.     parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
475.     parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
476. # Weights & Biases arguments
477.     parser.add_argument('--entity', default=None, help='W&B: Entity')
478.     parser.add_argument('--upload_dataset', action='store_true', help='W&B: Upload dataset as artifact table')
479.     parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
480.     parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
481. 
482.     opt = parser.parse_known_args()[0] if known else parser.parse_args()
483. return opt
484. 
485. 
486. def main(opt, callbacks=Callbacks()):
487. 
488. # Checks
489. if RANK in [-1, 0]:
490.         print_args(FILE.stem, opt)
491.         check_git_status()
492.         check_requirements(exclude=['thop'])
493. 
494. # Resume
495. if opt.resume and not check_wandb_resume(opt) and not opt.evolve:  # resume an interrupted run
496.         ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
497. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
498. with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
499.             opt = argparse.Namespace(**yaml.safe_load(f))  # replace
500.         opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate
501.         LOGGER.info(f'Resuming training from {ckpt}')
502. else:
503.         opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
504.             check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
505. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
506. if opt.evolve:
507.             opt.project = str(ROOT / 'runs/evolve')
508.             opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
509.         opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
510. 
511. # DDP mode
512.     device = select_device(opt.device, batch_size=opt.batch_size)
513. if LOCAL_RANK != -1:
514. assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
515. assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
516. assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
517. assert not opt.evolve, '--evolve argument is not compatible with DDP training'
518.         torch.cuda.set_device(LOCAL_RANK)
519.         device = torch.device('cuda', LOCAL_RANK)
520.         dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
521. 
522. # Train
523. if not opt.evolve:
524.         train(opt.hyp, opt, device, callbacks)
525. if WORLD_SIZE > 1 and RANK == 0:
526.             LOGGER.info('Destroying process group... ')
527.             dist.destroy_process_group()
528. 
529. # Evolve hyperparameters (optional)
530. else:
531. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
532.         meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
533. 'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
534. 'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
535. 'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
536. 'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
537. 'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
538. 'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
539. 'box': (1, 0.02, 0.2),  # box loss gain
540. 'cls': (1, 0.2, 4.0),  # cls loss gain
541. 'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
542. 'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
543. 'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
544. 'iou_t': (0, 0.1, 0.7),  # IoU training threshold
545. 'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
546. 'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
547. 'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
548. 'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
549. 'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
550. 'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
551. 'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
552. 'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
553. 'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
554. 'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
555. 'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
556. 'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
557. 'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
558. 'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
559. 'mixup': (1, 0.0, 1.0),  # image mixup (probability)
560. 'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)
561. 
562. with open(opt.hyp, errors='ignore') as f:
563.             hyp = yaml.safe_load(f)  # load hyps dict
564. if 'anchors' not in hyp:  # anchors commented in hyp.yaml
565.                 hyp['anchors'] = 3
566.         opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
567. # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
568.         evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
569. if opt.bucket:
570.             os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}')  # download evolve.csv if exists
571. 
572. for _ in range(opt.evolve):  # generations to evolve
573. if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
574. # Select parent(s)
575.                 parent = 'single'  # parent selection method: 'single' or 'weighted'
576.                 x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
577.                 n = min(5, len(x))  # number of previous results to consider
578.                 x = x[np.argsort(-fitness(x))][:n]  # top n mutations
579.                 w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
580. if parent == 'single' or len(x) == 1:
581. # x = x[random.randint(0, n - 1)]  # random selection
582.                     x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
583. elif parent == 'weighted':
584.                     x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination
585. 
586. # Mutate
587.                 mp, s = 0.8, 0.2  # mutation probability, sigma
588.                 npr = np.random
589.                 npr.seed(int(time.time()))
590.                 g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
591.                 ng = len(meta)
592.                 v = np.ones(ng)
593. while all(v == 1):  # mutate until a change occurs (prevent duplicates)
594.                     v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
595. for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
596.                     hyp[k] = float(x[i + 7] * v[i])  # mutate
597. 
598. # Constrain to limits
599. for k, v in meta.items():
600.                 hyp[k] = max(hyp[k], v[1])  # lower limit
601.                 hyp[k] = min(hyp[k], v[2])  # upper limit
602.                 hyp[k] = round(hyp[k], 5)  # significant digits
603. 
604. # Train mutation
605.             results = train(hyp.copy(), opt, device, callbacks)
606. 
607. # Write mutation results
608.             print_mutation(results, hyp.copy(), save_dir, opt.bucket)
609. 
610. # Plot results
611.         plot_evolve(evolve_csv)
612.         LOGGER.info(f'Hyperparameter evolution finished\n'
613. f"Results saved to {colorstr('bold', save_dir)}\n"
614. f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')
615. 
616. 
617. def run(**kwargs):
618. # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
619.     opt = parse_opt(True)
620. for k, v in kwargs.items():
621. setattr(opt, k, v)
622.     main(opt)
623. 
624. 
625. # python train.py --data mask_data.yaml --cfg mask_yolov5s.yaml --weights pretrained/yolov5s.pt --epoch 100 --batch-size 4 --device cpu
626. # python train.py --data mask_data.yaml --cfg mask_yolov5l.yaml --weights pretrained/yolov5l.pt --epoch 100 --batch-size 4
627. # python train.py --data mask_data.yaml --cfg mask_yolov5m.yaml --weights pretrained/yolov5m.pt --epoch 100 --batch-size 4
628. if __name__ == "__main__":
629.     opt = parse_opt()
630.     main(opt)


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
7月前
|
安全
【守护工地安全】YOLOv8实现安全帽检测
【守护工地安全】YOLOv8实现安全帽检测
191 0
|
8月前
|
机器学习/深度学习 监控 算法
基于脑电功率的疲劳驾驶检测研究_kaic
基于脑电功率的疲劳驾驶检测研究_kaic
|
计算机视觉
计算机视觉:驾驶员疲劳检测(二)
计算机视觉:驾驶员疲劳检测(二)
245 0
|
计算机视觉
计算机视觉:驾驶员疲劳检测(一)
计算机视觉:驾驶员疲劳检测
159 0
|
机器学习/深度学习 编解码 算法
YOLO 施工安全帽目标检测模型
建筑工地的工人安全是许多建筑行业日益关注的问题。佩戴安全帽可以减少建筑工地工人的伤害,但由于各种原因,安全帽并不总是正确佩戴。因此,基于计算机视觉的自动安全帽检测系统极为重要。许多研究人员已经开发了基于机器和深度学习的头盔检测系统,但很少有人专注于建筑工地的头盔检测。
164 0
|
计算机视觉 数据格式 Python
人脸口罩检测:使用YOLOv5检测公共场所是否佩戴口罩
人脸口罩检测:使用YOLOv5检测公共场所是否佩戴口罩
155 0
|
机器学习/深度学习 传感器 算法
【跌倒检测】基于计算机视觉和帧差法的人体跌倒检测系统附matlab代码
【跌倒检测】基于计算机视觉和帧差法的人体跌倒检测系统附matlab代码
|
算法 固态存储 数据挖掘
智慧交通day02-车流量检测实现11:yoloV3模型
YOLOv3是YOLO (You Only Look Once)系列目标检测算法中的第三版,相比之前的算法,尤其是针对小目标,精度有显著提升。
350 0
|
机器学习/深度学习 计算机视觉 智慧交通
智慧交通day02-车流量检测实现12:基于yoloV3的目标检测
在这里我们进行的目标检测是基于OPenCV的利用yoloV3进行目标检测,不涉及yoloV3的模型结构、理论及训练过程,只是利用训练好的模型进行目标检测
229 0

相关课程

更多