【守护工地安全】YOLOv8实现安全帽检测

简介: 【守护工地安全】YOLOv8实现安全帽检测

数据集

该图像数据集包含8000张图像,两个类别分别是安全帽与人、以其中200多张图像为验证集,其余为训练集。

模型训练

准备好数据集以后,直接按下面的命令行运行即可:

yolo train model=yolov8s.pt data=hat_dataset.yaml epochs=50 imgsz=640 batch=4

导出与测试

下面的命令行,导出模型为ONNX格式,同时预测模型的实际推理能力

yolo export model=hat_best.pt format=onnx
yolo predict model=hat_best.pt source=./hats

### 部署推理

转成ONNX格式文件以后,基于OpenVINO-Python部署推理,相关代码如下

# Read IR
model = ie.read_model(model="hat_best.onnx")
compiled_model = ie.compile_model(model=model, device_name="CPU")
output_layer = compiled_model.output(0)

capture = cv.VideoCapture("D:/images/video/hat_test.mp4")
while True:
    _, frame = capture.read()
    if frame is None:
        print("End of stream")
        break
    bgr = format_yolov8(frame)
    img_h, img_w, img_c = bgr.shape

    start = time.time()
    image = cv.dnn.blobFromImage(bgr, 1 / 255.0, (640, 640), swapRB=True, crop=False)

    res = compiled_model([image])[output_layer] # 1x84x8400
    rows = np.squeeze(res, 0).T
    class_ids = []
    confidences = []
    boxes = []
    x_factor = img_w / 640
    y_factor = img_h / 640

    for r in range(rows.shape[0]):
        row = rows[r]
        classes_scores = row[4:]
        _, _, _, max_indx = cv.minMaxLoc(classes_scores)
        class_id = max_indx[1]
        if (classes_scores[class_id] > .25):
            confidences.append(classes_scores[class_id])
            class_ids.append(class_id)
            x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item()
            left = int((x - 0.5 * w) * x_factor)
            top = int((y - 0.5 * h) * y_factor)
            width = int(w * x_factor)
            height = int(h * y_factor)
            box = np.array([left, top, width, height])
            boxes.append(box)

    indexes = cv.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45)
    for index in indexes:
        box = boxes[index]
        color = colors[int(class_ids[index]) % len(colors)]
        cv.rectangle(frame, box, color, 2)
        cv.rectangle(frame, (box[0], box[1] - 20), (box[0] + box[2], box[1]), color, -1)
        cv.putText(frame, class_list[class_ids[index]], (box[0], box[1] - 10), cv.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 0))
    end = time.time()
    inf_end = end - start
    fps = 1 / inf_end
    fps_label = "FPS: %.2f" % fps
    cv.putText(frame, fps_label, (20, 45), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

    cv.imshow("YOLOv8 hat Detection", frame)
    cc = cv.waitKey(1)
    if cc == 27:
        break
cv.destroyAllWindows()

认真学习 YOLOv8 点这里。

相关文章
|
7月前
|
监控 安全 自动驾驶
基于python的室内老人实时摔倒智能监测系统-跌倒检测系统(康复训练检测+代码)
基于python的室内老人实时摔倒智能监测系统-跌倒检测系统(康复训练检测+代码)
|
监控 安全 异构计算
头盔佩戴检测(行人跟踪技术检测)
头盔佩戴检测(行人跟踪技术检测)
头盔佩戴检测(行人跟踪技术检测)
|
机器学习/深度学习 传感器 数据可视化
避免自动驾驶事故,CV领域如何检测物理攻击?(2)
避免自动驾驶事故,CV领域如何检测物理攻击?
140 0
|
算法 固态存储 数据挖掘
智慧交通day02-车流量检测实现11:yoloV3模型
YOLOv3是YOLO (You Only Look Once)系列目标检测算法中的第三版,相比之前的算法,尤其是针对小目标,精度有显著提升。
342 0
X光安检图像检测挑战赛3.0(下)
X光安检图像检测挑战赛3.0(下)
233 0
X光安检图像检测挑战赛3.0(下)
|
XML JSON 算法
X光安检图像检测挑战赛3.0(上)
X光安检图像检测挑战赛3.0(上)
370 0
X光安检图像检测挑战赛3.0(上)
|
监控 算法 安全
Study-路面裂缝检测识别系统设计
Study-路面裂缝检测识别系统设计
353 0
Study-路面裂缝检测识别系统设计
|
算法 Python
疫情期间佩戴口罩检测之训练检测口罩模型算法实现口罩检测步骤以及报错解决
疫情期间佩戴口罩检测之训练检测口罩模型算法实现口罩检测步骤以及报错解决
596 1
疫情期间佩戴口罩检测之训练检测口罩模型算法实现口罩检测步骤以及报错解决
|
存储 前端开发 算法
复杂场景下的跌倒行为检测系统
跌倒是生活中较为常见的危险行为,随着人工智能技术的发展,研究人员尝试利用更先进的技术对跌倒行为进行检测,减少人力成本并尽可能减轻跌倒带来的危害。由于摄像头等监控设备的普及,使用计算机视觉的方法对跌倒行为进行分析和检测具有重要的研究价值和意义。然而传统的基于视觉的跌倒检测大多基于简单场景,面对多人或更复杂的场景时检测效果就会大大折扣。
786 0
复杂场景下的跌倒行为检测系统
|
机器学习/深度学习 人工智能 算法
口罩检测算法研究现状
近年来,随着人工智能的快速发展,基于深度学习的目标检测算法有着越来越广泛的应用,由于深度学习算法在真实环境中的鲁棒性远超过传统视觉算法,更适合应对现实环境中的各种复杂情况。
1705 0
口罩检测算法研究现状
下一篇
DataWorks