基于PSO粒子群优化算法的TSP路径规划matlab仿真

简介: 基于PSO粒子群优化算法的TSP路径规划matlab仿真

1.算法描述

   粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。

   在求解TSP这种整数规划问题的时候, PSO显然与ACO不同, PSO需要对算法本身进行一定的修改, 毕竟PSO刚开始是应用在求解连续优化问题上的. 

    在路径规划中,我们将每一条路径规划为一个粒子,每个粒子群群有 n 个粒 子,即有 n 条路径,同时,每个粒子又有 m 个染色体,即中间过渡点的个数,每 个点(染色体)又有两个维度(x,y),在代码中用 posx 和 posy 表示一个种群。 通过每一代的演化,对粒子群进行演化操作,选择合适个体(最优路径)。
1.png

最终算法伪代码如下:

初始化: 每个粒子获得一个随机解和一个随机的SS (命名为速度)

For 在位置 X_{id} 的所有粒子, 计算新的位置 X_{id}':

计算 P_{id} 与 X_{id} 之间的差 A = P_{id} - X_{id}, 其中 A 为 BSS

计算 B = P_{gd} - X_{id}, 其中 B 为 BSS

根据速度更新公式计算新的速度 V_{id}', 并将 V_{id}' 转换为一个 BSS

计算新的解 X_{id}' = X_{id} + V_{id} (也就是 V_{id} 作用在 X_{id} 上)

更新 P_{id} 如果新的解更好

更新 P_{gd} 若出现新的全局最好的解

2.matlab算法仿真效果
matlab2017b仿真结果如下:

2.png
3.png

3.MATLAB核心程序

for i=1:m
    x(i,:)=randperm(n);  %粒子位置
end
F=fitness(x,C,D);         %计算种群适应度 
%xuhao=xulie(F)           %最小适应度种群序号
a1=F(1);
a2=1;
for i=1:m
    if a1>=F(i)
        a1=F(i);
        a2=i;
    end
end
xuhao=a2;
Tour_pbest=x;            %当前个体最优
Tour_gbest=x(xuhao,:) ;  %当前全局最优路径
Pb=inf*ones(1,m);        %个体最优记录
Gb=F(a2);         %群体最优记录
xnew1=x;
N=1;
while N<=Nmax
    %计算适应度 
    F=fitness(x,C,D);
    for i=1:m
        if F(i)<Pb(i)
            Pb(i)=F(i);      %将当前值赋给新的最佳值
            Tour_pbest(i,:)=x(i,:);%将当前路径赋给个体最优路径
        end
        if F(i)<Gb
            Gb=F(i);
            Tour_gbest=x(i,:);
        end
    end
%  nummin=xulie(Pb)           %最小适应度种群序号
    a1=Pb(1);
    a2=1;
    for i=1:m
        if a1>=Pb(i)
            a1=Pb(i);
            a2=i;
        end
    end
    nummin=a2;
    Gb(N)=Pb(nummin);          %当前群体最优长度
    for i=1:m
      %% 与个体最优进行交叉
      c1=round(rand*(n-2))+1;  %在[1,n-1]范围内随机产生一个交叉位
      c2=round(rand*(n-2))+1;
      while c1==c2
          c1=round(rand*(n-2))+1;  %在[1,n-1]范围内随机产生一个交叉位
          c2=round(rand*(n-2))+1;
      end   
      chb1=min(c1,c2);
      chb2=max(c1,c2);
      cros=Tour_pbest(i,chb1:chb2); %交叉区域矩阵
      ncros=size(cros,2);       %交叉区域元素个数
      %删除与交叉区域相同元素
      for j=1:ncros
          for k=1:n
              if xnew1(i,k)==cros(j)
                 xnew1(i,k)=0;
                  for t=1:n-k
                      temp=xnew1(i,k+t-1);
                      xnew1(i,k+t-1)=xnew1(i,k+t);
                      xnew1(i,k+t)=temp;
                  end                 
              end
          end
      end
      xnew=xnew1;
      %插入交叉区域
      for j=1:ncros
          xnew1(i,n-ncros+j)=cros(j);
      end
      %判断产生新路径长度是否变短
      dist=0;
      for j=1:n-1
          dist=dist+D(xnew1(i,j),xnew1(i,j+1));
      end
      dist=dist+D(xnew1(i,1),xnew1(i,n));
      if F(i)>dist
          x(i,:)=xnew1(i,:);
      end
      %% 与全体最优进行交叉
      c1=round(rand*(n-2))+1;  %在[1,n-1]范围内随机产生一个交叉位
      c2=round(rand*(n-2))+1;
      while c1==c2
          c1=round(rand*(n-2))+1;  %在[1,n-1]范围内随机产生一个交叉位
          c2=round(rand*(n-2))+1;
      end   
      chb1=min(c1,c2);
      chb2=max(c1,c2);
      cros=Tour_gbest(chb1:chb2); %交叉区域矩阵
      ncros=size(cros,2);       %交叉区域元素个数
      %删除与交叉区域相同元素
      for j=1:ncros
          for k=1:n
              if xnew1(i,k)==cros(j)
                 xnew1(i,k)=0;
                  for t=1:n-k
                      temp=xnew1(i,k+t-1);
                      xnew1(i,k+t-1)=xnew1(i,k+t);
                      xnew1(i,k+t)=temp;
                  end                 
              end
          end
      end
      xnew=xnew1;
      %插入交叉区域
      for j=1:ncros
          xnew1(i,n-ncros+j)=cros(j);
      end
      %判断产生新路径长度是否变短
      dist=0;
      for j=1:n-1
          dist=dist+D(xnew1(i,j),xnew1(i,j+1));
      end
      dist=dist+D(xnew1(i,1),xnew1(i,n));
      if F(i)>dist
          x(i,:)=xnew1(i,:);
      end
      %% 进行变异操作
      c1=round(rand*(n-1))+1;   %在[1,n]范围内随机产生一个变异位
      c2=round(rand*(n-1))+1;
      temp=xnew1(i,c1);
      xnew1(i,c1)=xnew1(i,c2);
      xnew1(i,c2)=temp;
       %判断产生新路径长度是否变短
      dist=0;
      for j=1:n-1
          dist=dist+D(xnew1(i,j),xnew1(i,j+1));
      end
      dist=dist+D(xnew1(i,1),xnew1(i,n));
      %dist=dist(xnew1(i,:),D);
      if F(i)>dist
          x(i,:)=xnew1(i,:);
      end
    end
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  %  F=(x,C,D)         %计算种群适应度 
    %xuhao=xulie(F)           %最小适应度种群序号
    a1=F(1);
    a2=1;
    for i=1:m
       if a1>=F(i)
            a1=F(i);
            a2=i;
        end
    end
    xuhao=a2;
    L_best(N)=min(F);
    Tour_gbest=x(xuhao,:);     %当前全局最优路径
    N=N+1;
   figure(1)
    scatter(C(:,1),C(:,2));
    hold on
    plot([C(Tour_gbest(1),1),C(Tour_gbest(n),1)],[C(Tour_gbest(1),2),C(Tour_gbest(n),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g')
    for ii=2:n
    plot([C(Tour_gbest(ii-1),1),C(Tour_gbest(ii),1)],[C(Tour_gbest(ii-1),2),C(Tour_gbest(ii),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g')
    end
    hold off
    figure(2)
    plot(L_best);
%     set(findobj('tag','N'),'string',num2str(N-1));%当前迭代次数
%     set(findobj('tag','tour'),'string',num2str(Tour_gbest));%当前最优路径
%     set(findobj('tag','L'),'string',num2str(min(L_best)));%当前最优路径长度       %%%这里的L_best是当前最优路径???
    
end
for j=1:Nmax
          if j==1
              Nbest=1;
          elseif L_best(j)<L_best(j-1)
              Nbest=j;
          end
end 
相关文章
|
1天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
2天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
14天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
22天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
23天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
24天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
23天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
23天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
43 3
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。