m基于GA遗传优化的GRNN广义回归神经网络销售数据预测算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA遗传优化的GRNN广义回归神经网络销售数据预测算法matlab仿真

1.算法描述

  随着市场经济的发展和全球化,国内外企业面临着越来越残酷的市场竞争,要想赢得竞争,赢得市场,从事商品销售的单位必须在短时间内,以最低的成本将产品提供给客户,这使得对市场的变化和本身业务的发展前景进行估计。

    制冷压缩机的主要功能是将低压气体提升为高压气体,是制冷设备的核心部件,其广泛应用在空调冰箱等各类电器设备中。因此制冷压缩机有着十分广泛的市场前景,为了获得较为准确的市场预期,我们需要使用已有的理论知识和科学方法,对制冷压缩机的市场发展趋势进行预先估计,从而进一步减少风险,避免企业决策的盲目性。

  遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。

   算法的算法流程图如下图所示:

1.png

从图1的算法流程图可知,遗传算法,其主要步骤如下所示:

    步骤一、选择问题解的一个编码,给出一个包含N个染色体的初始种群。

    步骤二、对种群中的每一个染色体 ,分别计算其对应的适应函数值。

    步骤三、若停止规则满足,则算法停止,否则计算概率P,并以此概率分布,从中随机选取N个染色体构成一个新的种群。

    步骤四、通过交叉(交叉概率为),得到N个染色体的交叉概率值。

    步骤五、以较小的变异概率,使得某染色体的一个基因发生变异,形成新的群体重复第步骤二步。

   对GRNN网络来说,当确定了学习样本,则相应的网络结构和各神经元之间的连接权值也就确定出来,网络的训练实际上只是确定平滑参数的过程。GRNN网络中的即相当于径向基函数的分布密度SPREAD。一般情况下,SPREAD越大,逼近过程就越平滑,但误差也增大;SPREAD越小,函数逼近越精确,但逼近过程也越不平滑。

  平滑参数的取值会在很大程度上影响着广义回归神经网络的预测性能,根据式子:

2.png
3.png

2.仿真效果预览
matlab2022a仿真结果如下:

4.png
5.png
6.png
7.png
8.png

3.MATLAB核心程序

data0    = data;
%归一化
Xmin     = min(data);
Xmax     = max(data);
data     = (data-min(data))/(max(data)-min(data));
 
figure;
plot(data(1:12),'b-x');
hold on
plot(data(13:24),'r-s');
hold on
plot(data(25:36),'k-o');
hold on
legend('2010销售量','2011销售量','2012销售量');
xlabel('Times(month)');
ylabel('销售量');
axis([0,12,0,1]);
grid on;
figure;
plot(data0(1:12),'b-x');
hold on
plot(data0(13:24),'r-s');
hold on
plot(data0(25:36),'k-o');
hold on
legend('2010销售量','2011销售量','2012销售量');
xlabel('Times(month)');
ylabel('销售量');
axis([0,12,0,1500]);
grid on;
%%
%使用遗传算法获得最优的平滑参数
MAXGEN = 30;
NIND   = 50;
Chrom  = crtbp(NIND,1*10);
 
%14个变量的区间
%优化变量如下:
%多边形个数N,1~100
Areas  = [0;
          1];
 
FieldD = [rep([10],[1,1]);Areas;rep([0;0;0;0],[1,1])];
 
alpha  = zeros(NIND,1);
alphas = zeros(MAXGEN,1);
 
 
for a=1:1:NIND 
    a
    alpha(a)= 0.5;       
    %计算对应的目标值
    Result = func_obj(alpha(a),data,Xmax,Xmin);
    E      = mean(abs(Result-data0(25:36)));
    J(a,1) = E;
end
Objv  = J;
gen   = 0; 
 
while gen < MAXGEN;   
      gen
      FitnV=ranking(Objv);    
      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,0.95);   
      Selch=mut( Selch,0.05);   
      phen1=bs2rv(Selch,FieldD);   
      
      for a=1:NIND  
          alpha(a)= phen1(a,1);      
          %计算对应的目标值
          Result  = func_obj(alpha(a),data,Xmax,Xmin);
          E       = mean(abs(Result-data0(25:36)));
          JJ(a,1) = E;
      end 
      Objvsel      = JJ;    
      [Chrom,Objv] = reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen          = gen + 1; 
      Error(gen)   = mean(JJ);
      alphas(gen)  = mean(alpha);
end 
Result  = func_obj(alphas(end),data,Xmax,Xmin);
%画图
figure;
subplot(121)
plot(alphas,'b-o');
hold on;
xlabel('迭代次数');
ylabel('平滑因子');
axis square;
grid on;
 
subplot(122)
plot(Error,'b-o');
hold on;
xlabel('迭代次数');
ylabel('Error');
axis square;
grid on;
 
load NET.mat
Result  = sim(net,1:12);
Result  = Result*(Xmax-Xmin)+Xmin;
 
figure
plot(data0(25:36),'b-o');
hold on
plot(Result,'r-s');
legend('2012销售量','预测值');
xlabel('Times(month)');
ylabel('销售量');
grid on;
 
figure
S = [data0(25:36);Result]';
bar(S);
legend('2012销售量','预测值');
xlabel('Times(month)');
ylabel('销售量');
save Rgrnn.mat Result
A = (Result-data0(25:36))./Result;
A = 100*A';
A
02_021m
相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
8天前
|
域名解析 缓存 网络协议
优化Lua-cURL:减少网络请求延迟的实用方法
优化Lua-cURL:减少网络请求延迟的实用方法
|
7天前
|
数据采集 监控 安全
公司网络监控软件:Zig 语言底层优化保障系统高性能运行
在数字化时代,Zig 语言凭借出色的底层控制能力和高性能特性,为公司网络监控软件的优化提供了有力支持。从数据采集、连接管理到数据分析,Zig 语言确保系统高效稳定运行,精准处理海量网络数据,保障企业信息安全与业务连续性。
27 4
|
9天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
47 17
|
20天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
21天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
43 10
|
23天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
46 10
|
23天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
24天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
21天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。

热门文章

最新文章