【推荐系统】推荐系统中分解共现矩阵的优点与局限性

简介: 【推荐系统】推荐系统中分解共现矩阵的优点与局限性

由于使用协同过滤,单纯考虑user或item之间的正反馈交互以及相似度量,这不能很好的利用全局信息,如果两个用户没有相同的历史行为,或者两个物品没有相同的用户购买,那么对于这两个物品或者用户来说,它们之间的相似度为0,这就会导致使用协同过滤不具备泛化利用全局信息的能力。

而隐向量的生成过程其实是对共享矩阵进行全局拟合的过程,因此隐向量其实是利用全局信息生成的。

矩阵分解的优点:

  • 泛化能力强:在一定程度上解决了矩阵稀疏的问题
  • 空间复杂度低:使用协同过滤进行推荐,需要维护用户和物品的相似度矩阵,而使用隐向量只需要存储物品和用户的隐向量矩阵即可,这就使得空间复杂度从 n 2 n^2n2 降低到 k ( m + n ) k(m+n)k(m+n)
  • 更好的扩展性和灵活性:矩阵分解的最终产出是用户和物品的隐向量矩阵,这其实与深度学习中的Embedding思想不谋而合,因此矩阵分解的结果也非常便于与其它特征进行组合和拼接,并便于与深度学习网络进行无缝结合

局限性:

  • 矩阵分解只能够使用共现矩阵,不能将用户、物品和上下文特征考虑在内进行建模,这将丧失很多信息


目录
相关文章
|
2月前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
40 4
|
2月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统的矩阵分解和FM模型
推荐系统的矩阵分解和FM模型
23 0
|
5月前
|
机器学习/深度学习 搜索推荐 知识图谱
图神经网络加持,突破传统推荐系统局限!北大港大联合提出SelfGNN:有效降低信息过载与数据噪声影响
【7月更文挑战第22天】北大港大联手打造SelfGNN,一种结合图神经网络与自监督学习的推荐系统,专攻信息过载及数据噪声难题。SelfGNN通过短期图捕获实时用户兴趣,利用自增强学习提升模型鲁棒性,实现多时间尺度动态行为建模,大幅优化推荐准确度与时效性。经四大真实数据集测试,SelfGNN在准确性和抗噪能力上超越现有模型。尽管如此,高计算复杂度及对图构建质量的依赖仍是待克服挑战。[详细论文](https://arxiv.org/abs/2405.20878)。
86 5
|
6月前
|
机器学习/深度学习 搜索推荐 算法
【阿旭机器学习实战】【37】电影推荐系统---基于矩阵分解
【阿旭机器学习实战】【37】电影推荐系统---基于矩阵分解
|
7月前
|
存储 搜索推荐 算法
python推荐系统实现(矩阵分解来协同过滤)
python推荐系统实现(矩阵分解来协同过滤)
|
7月前
|
机器学习/深度学习 搜索推荐 算法
python机器学习:推荐系统实现(以矩阵分解来协同过滤)
python机器学习:推荐系统实现(以矩阵分解来协同过滤)
|
7月前
|
分布式计算 搜索推荐 算法
推荐系统的数学模型-从矩阵分解到推荐系统(Scala实现)
推荐系统的数学模型-从矩阵分解到推荐系统(Scala实现)
136 0
|
4月前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
170 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
|
6月前
|
搜索推荐 算法 小程序
基于Java协同过滤算法的电影推荐系统设计和实现(源码+LW+调试文档+讲解等)
基于Java协同过滤算法的电影推荐系统设计和实现(源码+LW+调试文档+讲解等)
|
6月前
|
搜索推荐 算法 小程序
基于Java协同过滤算法的图书推荐系统设计和实现(源码+LW+调试文档+讲解等)
基于Java协同过滤算法的图书推荐系统设计和实现(源码+LW+调试文档+讲解等)