每日好店——淘宝店铺推荐系统实践

简介: 每日好店——淘宝店铺推荐系统实践

每日好店是淘宝一款经典的产品,它立足于淘宝千万卖家与海量的货源,从好品牌,好货源,好服务三个角度入手,为用户精选"平台说好,达人说好,用户说好"的淘宝优质店铺。通过中心化的好店频道,使淘宝用户对于淘内好店标准有强烈的体感,并能够让用户于淘系千万卖家中,发现真正的好店铺,形成淘宝内发现店铺的第一阵地。

我们将分两篇内容介绍我们在“每日好店“场景效率和体验上的优化升级。本篇将主要从业务视角出发,浅谈一下技术协作业务的思路,如何优化场景的效率和体验;下篇内容将从技术视角出发,介绍店铺和商品两级排序模型的升级。



背景
每日好店作为一个经典的导购场景,承接了淘宝内用户对于集中发现优质店铺的主体需求。现阶段电商平台越来越以商品作为分发组织单元,店铺存在感一直被弱化。这抑制了商家私域的运营和成长。每日好店希望通过中心化的店铺分发架构公私域联动最直接的桥梁,让用户在频道内直接得到街景式逛店体验,发现更多优质商家。

 


每日好店频道主要包括3个 tab:今日头条、特色街和店铺榜单。其中,首页头条是帮助用户发现热门趋势店铺,特色街是向用户推荐小众特色店铺,榜单定位则是具体生活消费场景下的店铺决策。这篇文章主要介绍今日头条中的店铺信息流推荐。
在技术侧,每日好店场景引出了一个较为新颖的推荐问题,“两级推荐”——即推荐的基本单元为一个集合态。我们为用户个性化推荐店铺,同时推荐店铺橱窗内相关商品。传统的两阶段方式(店铺推荐+店铺内商品推荐)限制了算法优化空间,我们打造了双链路店铺大卡推荐体系,让商品推荐与店铺推荐相互交融,互为补充,最终实现了效率和个性化体验上的双向提升。

好店标准体系搭建


优质店铺的定义是每日好点场景的立足之基,更是频道用户体验最有力的保障。
大多数公域场景以“商品”作为分发单元,好店则是以店铺为单元,因而店铺作为场景的“原子”就承载了整个频道的调性输出与品质把控。我们希望依托每日好店,建立平台统一定义的”好店“评价体系与标签库,在用户端结构化表达店铺入选“好店”的理由。为此我们将店铺在各个侧面进行切片并分析打分,并显示化为推荐理由,并在前台作为背书表达。其中涉及【好店评价体系搭建】,【好店标准外化】两方面的工作。

 好店评价体系搭建


结合业务输入的店铺分层指标项,好店标准解决方案输入为千万卖家,输出为每个卖家在各维度对应的归一化分数,并对多维分数结合业务输入,行业特色进行融合以此来圈定好店最终的店铺底池。具体流程如下:



 好店标准外化


频道心智定义为“发现精选好店”,其中每个店铺的入选标准是我们能够给用户反馈“平台说好”的重要渠道。基于好店评价体系中各维度的输出分数,对一些具有用户体感,能够显示代表该店铺在整体评价体系位置的元素,我们进行了运营加工外化,并在前台底置于店招区域作为背书透出。


外化标签包括:店铺基础属性(如N年好店等),店铺效率(如回头客人数等),商业规模(如粉丝数,会员数等),购物体验(如好评率,物流服务指数等)。



技术方案介绍


 基于人群画像的店铺推荐




  • 人群热门召回


用户发现和种草过程会参考与自己相关的群体投票行为,通过识别用户的特征并关联相似人群,建立了基于24格人群的个性化商品召回支路。这部分召回:1、仅筛选全网足够优质店铺(店铺质量分)2、计算每个人群偏好的top1k店铺,作为所有用户的兜底召回。线上表现来看,削弱了分发的寡头效应(高曝光低点击率)商家占比。



 用户体验优化之打散算法


推荐系统的本质是提升用户和商品的匹配效率,帮助用户更高效地从海量物品中发现感兴趣的商品集合(精准性),同时,推荐系统还兼顾用户兴趣的拓展,发现并激发用户隐式需求(发现性)。


店品两级推荐让我们不仅要考虑商品之间的差异度,也需要考虑店铺之间差异度,并且需要在其中找到平衡。为了解决这个问题,我们对业内常用方法MLR进行了改良;a、引入散度分因子,将推荐发散度衡量标准直接量化,使得不同打散策略能够横向比较;b、引入个性化打散因子:希望整个session透出的类目分布和用户偏好分布趋于一致;c、引入双度量打散因子:综合考虑商品和店铺发散度情况,建立合二为一的打散机制。


两级打散方法被命名为Two-order Listing Relevance (TLR)。


  • 散度分


传统的打散方法通过调节参数来控制相关性和发散性,但是没有一个较合理的指标来评判打散算法的优劣。我们考虑定义一个推荐列表平均发散程度的指标:

  1. 能够结合信息流内曝光位置,衡量相似内容散开程度;
  2. 散度分的数值具备明确的含义,不同长度的内容流可以比较。
    借鉴ndcg的设计思路,我们设计了NormedScatterScore指标,即散度分(NSS)。



其中为最散的情况(每个位置都不相同)对应的,作为归一化因子。我们使用散度分与效率指标作为打散策略优劣的评定标准。


  • 个性化打散


我们发现,基于商品相关度和商品差异度定义的打散优化目标,在行为较少或行为较集中的用户上表现极端。一个明显的例子是,有些信息流在每个窗口内都维持了一定的散度,但是在整个流内来看却不断循环几个固定的品类。例如,用户有个偏好类目,但只有近期被激活,近期激活类目由于个性化分数比较高容易被反复推荐,发现性类目不能被透出,推荐结果仍较为聚集:我们希望重排序能够让整个session的类目分布和用户偏好分布趋于一致,从而达到“个性化”打散的目的。基于用户长期行为统计用户的偏好分布,让流内推荐分布尽可能与用户偏好分布一致,添加分布散度作为惩罚项:

其中,采用EMD(推土机距离)衡量两个离散概率分布的距离。


  • 基于Beam Search的两级打散


MLR使用greedy search策略,每一步都是局部最优策略,并不能保证全局最优解;beam search可在可控复杂度内,提高获取最优解的概率。我们在好店中也实现了标准的Fast Greedy MAP Inference算法。
应用beam search进行最优解的搜索时,每次都从候选集合中挑选k个最优的子序列。这里的关键问题是:如何高效计算任意长度子序列的综合得分。一个子序列的综合得分中多样性
(商品之间差异的惩罚项)的计算和上一个时间步存在大量重复,因此,可以将重复部分cache起来,加速计算过程。


好店卡片包含两级信息:店铺部分和商品部分。前面的打散对于店铺这一层并没有考虑。当用户在真正逛店时,例如我们推荐了连衣裙。针织和女鞋这样的商品流,但是背后的商家组成有可能都是时尚女装店铺。为了让用户体验更加丰富,我们将流内店铺的散度借用散度分纳入目标函数当中。

其中为取卡片对应店铺函数。店铺散度分因子和对商品相似度惩罚目的一致,它是多样性的“硬”标准,使用示性函数约束店铺主营类目的发散程度,与基于商品表征相关度等离散分数相互配合。


最终的优化目标是基于Fast Greedy MAP检索,为我们最终优化得到的目标序列(顺序敏感),优化目标包括几项:相关性、多样性、个性化

实验结论:最终上线后,我们效率指标微涨,得到了生态指标的显著提升。


店铺橱窗表现力升级

当推荐商品列表确定后,我们考虑提升商品前台展示力。即通过更合适的图像,文案和展示样式来呈现店铺橱窗。这其中包含了两个层次的优化:卡片容器样式优化与内容选择(智能UI)。通过展示形式的优化期望提升频道效率与用户使用体验。


 店品组织形态


观察到坪效对于频道效率影响较大,但是卡片版头设计留白较多,背书的展示与评论的展示都很松散,没有很好的利用空间。为了提升坪效优化用户浏览体验,将图像容器尺寸优化设计,对于大部分商品图像展示更友好。


 店铺橱窗内容


店铺橱窗最重要的组成元素是商品,也是店铺内容的核心外化。这里我们考虑对商品进行更丰富的表达,在商品图基础上,添加商品的卖点(如浏览上千,销量过万等统计标),并丰富商品视频,店铺新品等内容对商品区域丰富。


除此之外,我们尝试用内容取代商品对店铺进行表达,通过去商品增商家自定义素材,将店铺大循环素材加入到分发(包括商家海报,活动外宣素材,宣传视频,直播,试搭间,自定义动态卡片等),这一部分的引入不仅活跃了商家与频道的互动,也丰富了信息流内容。


总结与展望


每日好店频道依托于淘宝活跃的用户群体,对于店铺/商家内容进行中心化的分发,希望能够达到,用户发现新鲜宝藏店铺,商家扩增运营阵地的双诉求。作为算法同学,我们立足于业务进行思考,结合场景用户行为反馈,用数据指导业务决策,以技术视角推动产品样式更迭。在优化过程中有两点较为深刻的感触:1、信息流的坪效与效率紧密相关,如何利用好我们每一次推荐曝光的机会需要精心设计;2、算法同学的空间不仅局限于模型优化,我们可以驱动数据产生,模型迭代,前端展示,交互设计甚至前台样式改版等,更多的探索能打开更大的空间。


除此之外,用户体验相关的优化是较难定义和评估的,它有时候会对效率有折损。但是我们坚信这是一条正确的路,是我们需要去解决的最重要问题。打散重排需有丰富的内容值得去挖掘,目前我们以上尝试的多样性方法中,都只是对店铺和商品分别添加了约束,这种简单的做法没有真正解决组合式信息的多样性问题。如何能够做到同时对两级信息(店/品)的感知与打散是未来想要去展开的一个方向。


团队介绍


我们是大淘宝技术的好货&好店技术团队,主要服务淘宝两大导购业务:有好货和每日好店,为上亿消费者提供导购服务,为千万商家、机构和达人提供内容运营平台和商业化方案,致力于通过技术和业务创新提升淘宝导购效率。团队研究方向主要包含商品推荐、内容推荐、AIGC等,我们在推荐算法领域也有很深的技术沉淀,在国际会议和杂志上发表数十篇学术论文。
大淘宝春季 2024 届实习生招聘已正式启动,欢迎对导购业务感兴趣的同学加入我们,可将简历发送到 houwei.hou@alibaba-inc.com


相关文章
|
6月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
426 0
|
5月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统的算法与实现:深入解析与实践
【6月更文挑战第14天】本文深入探讨了推荐系统的原理与实现,包括用户和项目建模、协同过滤、内容过滤及混合推荐算法。通过收集用户行为数据,系统预测用户兴趣,提供个性化推荐。实践中,涉及数据处理、建模、算法选择及结果优化。随着技术发展,推荐系统将持续改进,提升性能和用户体验。
|
1月前
|
数据采集 搜索推荐
推荐系统实践之新闻推荐baseline理解
推荐系统实践之新闻推荐baseline理解
28 1
|
1月前
|
数据采集 搜索推荐
推荐系统实践之新闻推荐baseline理解
推荐系统实践之新闻推荐baseline理解
50 1
|
4月前
|
机器学习/深度学习 搜索推荐 算法
深度学习在推荐系统中的应用:技术解析与实践
【7月更文挑战第6天】深度学习在推荐系统中的应用为推荐算法的发展带来了新的机遇和挑战。通过深入理解深度学习的技术原理和应用场景,并结合具体的实践案例,我们可以更好地构建高效、准确的推荐系统,为用户提供更加个性化的推荐服务。
|
6月前
|
人工智能 自然语言处理 搜索推荐
LLM在电商推荐系统的探索与实践
LLM在电商推荐系统的探索与实践
2377 1
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
构建基于AI的个性化新闻推荐系统:技术探索与实践
【6月更文挑战第5天】构建基于AI的个性化新闻推荐系统,通过数据预处理、用户画像构建、特征提取、推荐算法设计及结果评估优化,解决信息爆炸时代用户筛选新闻的难题。系统关键点包括:数据清洗、用户兴趣分析、表示学习、内容及协同过滤推荐。实践案例证明,结合深度学习的推荐系统能提升用户体验,未来系统将更智能、个性化。
|
6月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统算法的研究与实践:协同过滤、基于内容的推荐和深度学习推荐模型
推荐系统算法的研究与实践:协同过滤、基于内容的推荐和深度学习推荐模型
616 1
|
6月前
|
NoSQL 搜索推荐 算法
【MongoDB】MongoDB在推荐系统中的实践应用
【4月更文挑战第1天】【MongoDB】MongoDB在推荐系统中的实践应用
|
搜索推荐
142 推荐系统架构(淘宝和京东)
142 推荐系统架构(淘宝和京东)
191 0