推荐系统召回中台技术实践

简介: 召回是推荐系统的第一阶段,主要根据用户和商品部分特征,从海量的物料库里,快速找回一小部分用户潜在感兴趣的物品,然后交给排序环节。这部分需要处理的数据量非常大,速度要求快,所有使用的策略、模型和特征都不能太复杂。

召回是推荐系统的第一阶段,主要根据用户和商品部分特征,从海量的物料库里,快速找回一小部分用户潜在感兴趣的物品,然后交给排序环节。这部分需要处理的数据量非常大,速度要求快,所有使用的策略、模型和特征都不能太复杂。

1.png

召回中台在推荐系统中应该扮演什么样的角色呢?答案可能为

  • 推荐候选的生成(系统定位)
  • 复制机制的注入(生态建设)

图片2.png

3.png

召回中台里模型化召回是很重要的组成部分。模型化召回可以分为两部分,包括召回模型的学习与更新,以及线上的Ann检索服务。在召回模型的学习与更新阶段,主要是基于用户平台行为信息,针对特定的学习目标,完成基于表征学习的召回模型训练和更新,该模型能够产出有效的高层User表征向量和Item表征向量。从学习目标来看,常见的召回模型包括内容语义类、行为偏好类、关系匹配类等。

图片4.png

从传统个性化召回到模型化召回

图片5.png

模型化召回的多目标处理

图片6.png

模型化召回的多样性

图片7.png

多目标召回的处理流程

图片8.png

图片9.png

物料冷启动

图片10.png

图片11.png

图片13.png

图片14.png

大规模召回中台的“深度化”展望

图片15.png

图模型应用

图片16.png

目录
打赏
0
1
0
0
74
分享
相关文章
推荐系统召回中台实践
召回是推荐系统的第一阶段,主要根据用户和商品部分特征,从海量的物料库里,快速找回一小部分用户潜在感兴趣的物品,然后交给排序环节。这部分需要处理的数据量非常大,速度要求快,所有使用的策略、模型和特征都不能太复杂。
394 0
推荐系统召回中台实践
蚂蚁金服核心技术:百亿特征实时推荐算法揭秘
文章提出一整套创新算法与架构,通过对TensorFlow底层的弹性改造,解决了在线学习的弹性特征伸缩和稳定性问题,并以GroupLasso和特征在线频次过滤等自研算法优化了模型稀疏性。在支付宝核心推荐业务获得了uvctr的显著提升,并较大地提升了链路效率。
2357 0
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结【冷启动召回、复购召回、用户行为召回等算法实战】
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结【冷启动召回、复购召回、用户行为召回等算法实战】
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结【冷启动召回、复购召回、用户行为召回等算法实战】
优酷视频基于用户兴趣个性化推荐的挑战和实践
本文将介绍一下优酷个性化搜索推荐的服务,优酷在视频个性化搜索推荐里用户兴趣个性化表达碰到的挑战和问题,当前工业界常用的方法,以及我们针对这些问题的尝试。
4124 0
历时三个月,微博推荐引擎架构蜕变之路
可靠性保障是一个复杂的系统工程,特别对于可靠性已经出现问题的线上服务,在业务迭代、成本约束、人力投入等方面的约束下 ,提升其可用性就不再是单纯的技术问题了。
322 0
历时三个月,微博推荐引擎架构蜕变之路
深入剖析阿里云推荐引擎——新架构,新体验
本文的整理自2017云栖大会-上海峰会上阿里云算法专家郑重(卢梭)的分享讲义,从2016年2月V2.0公开使用到现在,阿里云推荐引擎有了更大的进步。有着获取排序的在线计算,修正匹配的近线计算及匹配排序的离线计算的计算机架构。
4133 0
电商平台如何精准抓住你的心?揭秘大数据背后的神秘推荐系统!
【10月更文挑战第12天】在信息爆炸时代,数据驱动决策成为企业优化决策的关键方法。本文以某大型电商平台的商品推荐系统为例,介绍其通过收集用户行为数据,经过预处理、特征工程、模型选择与训练、评估优化及部署监控等步骤,实现个性化商品推荐,提升用户体验和销售额的过程。
202 1
深度学习如何应用在广告、推荐及搜索业务?阿里妈妈实践案例解读
靖世:非常高兴与大家进行“深度学习演进之路”的交流,阿里妈妈是阿里巴巴集团下的大数据营销平台,是负责阿里巴巴变现的一个事业部。我研究的方向是机器学习、计算机视觉、推荐系统和计算广告。我在清华大学读的本科和博士,专业是计算机视觉,毕业之后加入阿里巴巴广告技术部,后来组成阿里妈妈事业部,这个事业部负责阿里所有的广告变现产品。
5418 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等