盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(上)

简介: 与基于激光雷达的定位相比,基于视觉和数据融合的定位技术在提高精度方面的潜力约为2–5倍。基于激光雷达和视觉的定位可以通过提高图像配准方法的效率来降低计算复杂性。与基于激光雷达和视觉的定位相比,基于数据融合的定位可以实现更好的实时性能,因为每个独立传感器不需要开发复杂的算法来实现其最佳定位潜力。V2X技术可以提高定位鲁棒性。最后,讨论了基于定量比较结果的AVs定位的潜在解决方案和未来方向。

1摘要



实时、准确和鲁棒的定位对于自动驾驶汽车(AVs)实现安全、高效驾驶至关重要,而实时性能对于AVs及时实现其当前位置以进行决策至关重要。迄今为止,没有一篇综述文章定量比较了基于各种硬件平台和编程语言的不同定位技术之间的实时性能,并分析了定位方法、实时性能和准确性之间的关系。因此,本文讨论了最先进的定位技术,并分析了它们在AV应用中的整体性能。为了进一步分析,本文首先提出了一种基于定位算法操作能力(LAOC)的等效比较方法,以比较不同定位技术的相对计算复杂性;然后,全面讨论了方法论、计算复杂性和准确性之间的关系。分析结果表明,定位方法的计算复杂性最大相差约107倍,而精度相差约100倍。与基于激光雷达的定位相比,基于视觉和数据融合的定位技术在提高精度方面的潜力约为2–5倍。基于激光雷达和视觉的定位可以通过提高图像配准方法的效率来降低计算复杂性。与基于激光雷达和视觉的定位相比,基于数据融合的定位可以实现更好的实时性能,因为每个独立传感器不需要开发复杂的算法来实现其最佳定位潜力。V2X技术可以提高定位鲁棒性。最后,讨论了基于定量比较结果的AVs定位的潜在解决方案和未来方向。


2介绍



自动驾驶车辆(AVs)有望在未来的智能交通系统中发挥关键作用,因为它们在确保安全驾驶、缓解交通压力和降低能耗方面具有潜力。目前对AVs的研究已进入道路测试阶段。例如,百度已经在复杂的道路场景中测试了Apollo 5.0系统,例如没有特殊标记的弯道或十字路口[1]。谷歌Waymo项目也在美国公共道路上完成了1000多万英里的路测,并在模拟中完成了70亿英里的路测[2]。然而,在AVs商业化之前,该行业仍需要应对几个关键挑战。这些挑战包括a)提出实时、准确和低成本的自定位解决方案;b)实现实时和准确的环境感知模型;c)在复杂场景中实现智能、安全和高效的决策。同时,环境感知和决策模块显著依赖于自动驾驶汽车的实时和准确的自定位,以实现安全驾驶。因此,自定位是AV的核心要素之一。此外,只有当自动定位达到毫秒级实时性能和厘米级精度时,才能确保安全驾驶,如避免碰撞[3]。


作为一种典型的方法,地图匹配算法广泛应用于许多配备激光雷达[4]、雷达[5]、相机[6]或V2X[7]的定位解决方案中。地图匹配方法之一是使用现有地图来匹配检测到的环境特征(例如,拐角和道路标记),从而获得车辆位置信息。另一种技术是在应用程序中使用的SLAM,无需先验地图。它通过同时构建用于顺序映射的环境模型(地图)来实现车辆定位。地图算法主要关注从各种传感器提取的抽象数据,如激光雷达、雷达、相机或它们的组合。在基于传感器的定位技术方面,它依靠车载传感器来估计车量车辆的绝对或相对位置。之前的综述对其进行了详细讨论[8]。在许多基于传感器的定位研究中,“传感器”被视为主要的定位传感器,作者试图探索一种主要基于其测量的创新方法,旨在解决某些特殊场景中的定位挑战。这并不意味着定位系统仅使用单个传感器来实现车辆定位。作为解释这一概念的示例,对于基于IMU的定位,参考文献[9]提出了一种交互多模型(IMM)方法,通过使用IMU和里程计传感器数据来消除由全球定位系统(GPS)中断或GPS信号块引起的系统漂移,从而提高了此类驾驶场景中的定位鲁棒性和完整性性能。基于传感器的定位技术可以指导AV定位系统的部署,包括如何选择能够满足实时性能的传感器、定位算法、融合算法和计算资源。此外,关注定位输入(传感器硬件)可以让读者更好地了解不同系统部署在准确性、实时性、鲁棒性和成本方面的优缺点。因此,本次调查将从车载传感器开始,讨论不同的基于传感器的定位技术,然后讨论V2X定位技术,最后讨论基于数据融合的定位。


图1显示了车辆不同自定位技术,包括车载传感器、V2X和基于数据融合的技术。基于车载传感器的定位系统,包括基于主动和被动传感器的技术,依靠车载传感器感知周围环境,然后估计车辆位置。基于V2X的定位方法与周围环境节点(例如,相邻车辆或基础设施)通信,以接收其位姿信息,包括基于车辆对车辆(V2V)和车辆对基础设施(V2I)的技术,这些技术可以为定位算法提供多个参考坐标。数据融合不是一种直接感测位置的方法,而是一种后处理定位感测技术。其目标是融合各种传感器的测量结果,以获得比单个传感器更好的结果。

640.png


基于主动传感器的定位通过车载传感器(包括激光雷达、雷达和超声波传感器)主动感知周围环境以估计车辆位置。它们的测距原理是相同的,这是基于到达时间(TOA)方法的。它们的区别在于信号载体,即激光雷达、雷达和超声波传感器的激光、无线电和超声波。信号载波波长的差异导致这些传感器的成本和精度的显著变化。例如,激光雷达通常成本最高,但精度最好,超声波[10]-[13]的情况正好相反。


基于被动传感器的定位被动地接收环境信息,从中计算车辆位置。传感器包括GPS、IMU和视觉(例如,单目或双目摄像机)。根据空间三角测量方法,GPS需要在开阔的天空区域中有三颗或更多的卫星来获取车辆位置(2–10m)。GPS的优点是成本低,但在城市环境中,它经常遭受多径和nonline-of-sight(NLOS)误差以及缓慢的位置更新率。IMU使用高频采样率(>100Hz)测量车辆加速度和转速。因此,可以通过给定初始姿态的航位推算来推导车辆的位置和方向[14]。尽管IMU具有快速的位置刷新率和高可靠性,但它也容易出现大量累积错误。基于视觉的定位通过使用来自单目或双目相机的图像作为输入来估计车辆位置。这类似于根据平面三角测量确定障碍物位置的人类视觉系统。图像中丰富的环境信息可以在适当的照明条件下提供令人满意的定位性能,但消耗大量的内存和计算资源。


基于V2V的定位是指vehicular ad hoc network(VANET)下的自动驾驶车辆,使用专用短程通信(DSRC)或长期演进技术来确定其他车辆的位姿,从而提高车辆的位置精度。基于V2I的定位是指目标车辆和静态基础设施之间的通信,使用它们的精确已知位置来确定目标车辆位置。基础设施的类型包括磁性标记、射频识别(RFID)标签、路边单元(RSU)和GPS基站。基于V2X的定位具有广泛的全局感知范围(300m[15]),但可能会受到网络延迟和城市拥堵的影响。


已经发表了许多调查,总结了现有的自定位技术,并全面讨论了它们的优缺点以及每种基于传感器的方法的潜在应用。然而,在评估各种定位方法时,最新的综述文件仅关注以下方面:


  • a) 经济和可靠的定位技术[8],其中经济对应于定位系统的成本,可靠对应于定位性能(包括准确性和可靠性),这些技术可以在各种驾驶场景(例如,下雪天气)中实现;
  • b) 准确度、可靠性和可用性[16],其中与定位系统相对应的可用性应在不同环境中可用,例如隧道中基于GPS的定位系统,在通信延迟的情况下的V2V方法;
  • c) 鲁棒性和可扩展性[17],[18],其中与定位系统相对应的鲁棒性在不同季节和交通条件下以低故障率长时间运行,可扩展性与车辆处理大规模自动驾驶的能力相对应。


640.png

自动定位的实时性能是评估AV安全驾驶的关键指标之一。上述调查还提到,研究人员在设计定位系统时应仔细考虑不同技术的计算负载和实时性能。然而,到目前为止,还没有调查对不同的自定位技术的实时性能进行比较和深入讨论。通过比较驾驶员行为对决策过程的反应时间[28]。论文进行了文献综述,以展示从感知障碍物到执行控制动作的时刻,AV行为的反应时间,如表I所示。根据计算机模拟和实际测试,为了满足安全驾驶,AV的整个决策过程的反应时间通常缩短至0.5s。然而,在极端情况下,检测和识别模块、规划和决策模块以及执行模块将占用近0.5秒,这导致为定位模块预留的执行时间非常有限。因此,快速实时定位解决方案可以为AV系统的其他模块(如决策)节省计算资源,以实施复杂的策略以确保安全驾驶。目前,在各种硬件平台和编程语言上呈现了不同定位解决方案的实时性能。直接使用每个自定位研究论文提供的数据来比较实时性能没有意义,也不能反映AV中内存和计算资源的相对消耗。也没有调查对同一基准下各种定位解决方案的计算复杂性进行量化,这与定位系统的实时性能和部署成本有关。本文旨在研究现有的最先进的定位技术,并着重于提出的每种解决方案的创新算法或方法,以及在实时性能、准确性和鲁棒性方面的整体定位性能;提出一种等效方法,定量比较基于各种硬件平台和编程语言的不同定位解决方案之间的相对实时性能;最后总结现有的定位技术,并基于AV中的定量比较结果讨论潜在的解决方案和未来方向。表II总结了论文的调查与最近现有调查之间的关系和差异。

640.png


3基于主动传感器的定位



基于激光雷达的定位


基于激光雷达的定位通常需要预先构建参考地图,以与点云数据或激光雷达反射强度数据相匹配。但在没有先验地图的情况下,它将使用SLAM技术构建实时地图以与先前生成的地图匹配。在AVs的应用中,高维地图包含丰富的特征信息,这提高了位置估计精度,但降低了存储效率并增加了处理时间[29],[30]。


Im等人[31]基于城市道路两侧建筑物的垂直角建立了一维角地图,用于匹配和定位。他们使用迭代端点拟合来提取垂直角的特征,并根据垂直线的长度和方向构建角特征图。然后,他们应用特征匹配和点云数据来计算车辆位置。由于提取的特征信息较少,该方法减少了匹配时间和地图数据文件大小(约14KB/km)。然而,最大水平位置误差达到0.46m;此外,这种方法不适用于没有建筑物的地区。参考文献[32]构建了由基于道路标记的道路反射密集图和基于垂直结构的概率占用网格图组成的2D占用网格图。首先,他们通过提取道路标记和拐角的线条特征,构建了一个1D扩展线地图(ELM)。这些要素仅包含直线两个端点的纬度和经度信息。然后,他们将ELM转换为2D网格地图,以便在定位过程中进行匹配。与[31]相比,[32]增加了道路标记特征以提高准确性性能,但该方法将ELM数据大小增加到134KB/km。


用于激光雷达定位的二维平面地图匹配在当前的研究中非常流行。例如,Levinson等人[4]通过使用SLAM式松弛算法来构建没有任何潜在移动物体的平坦地面反射图,然后使用部分滤波器(PF)来关联激光雷达,从而获得车辆定位。为了进一步提高鲁棒性,参考文献[33]使用了表示为remittance values的高斯分布的概率图,而不是表示为固定infrared remittance values的先前地图。它使地图中的静止物体和一致的角反射率能够通过贝叶斯推断快速识别。然后使用离线SLAM来对齐先前序列地图中的重叠轨迹,这使得定位系统不断学习和改进地图。与参考文献[4]中的方法相比,参考文献[33]提高了动态城市环境中AV的定位精度和鲁棒性。然而,这两种方法的地图数据大小已增加到每英里10MB左右。其他相关算法[29]、[35]—[42]可以参考具体论文。


基于3D地图的匹配可以实现更准确的位置,因为它包含环境对象的高度信息。参考文献[43]通过提取道路标记特征构建了3D地图。然后,系统使用正态分布变换(NDT)来处理不确定信息,之后基于PF推导出鲁棒性和精确定位。然而,3D NDT方法可能需要大量内存来保存ND体素(用于匹配的3D ND体素总数高达100MB[30]),这导致定位时间与second level一样长[44]。Li等人[45]提出构建3D占用网格地图,然后使用混合过滤框架(即cubature Kalman filter和PF的组合)来计算大规模户外定位并减少地图数据大小。尽管数据量减少了,但实验表明,该方法可以保持稳定、可靠的定位性能,这意味着定位误差小于0.097m。


基于雷达的定位


与基于激光雷达和视觉的定位相比,基于雷达的定位可以满足实时性能要求,因为其内存效率高且计算负载低[46],[47]。然而,基于雷达的SLAM在地图匹配中面临数据配准错误的风险,因为有时会提取不真实的特征,从而导致定位精度低的风险[5]。面向轨迹的扩展卡尔曼滤波器(EKF)-SLAM技术使用傅里叶-梅林变换顺序配准雷达图像,并在不匹配特征的情况下计算车辆位置,以避免此类特征带来的风险。缺点是定位误差达到13m(平均值)[46]。参考文献[48]旨在通过Levy过程扩展半马尔可夫链,以提高长期变化环境中的鲁棒性,83%的估计位置误差小于0.2m。对于雨雪情况,[49]通过对误差传播的不确定性进行建模,然后匹配雷达图像以实现可靠定位,从而建立了参考地图。参考文献[50]提出了一种聚类SLAM技术,该技术使用基于密度的流聚类算法对动态环境中的雷达信号进行聚类。提出了一种无测量噪声的环境扫描用于地图匹配。PF用于使用该匹配结果来计算车辆位置。该技术中使用的地图大小仅为200KB。


此外,参考文献[51]和[52]提出了一种基于空间和多普勒的联合优化框架,以进一步提高定位速度。该框架通过构建稀疏高斯混合模型来表达参考点云,该模型是一种稀疏概率密度函数,可以降低计算复杂性。该方法的定位刷新率可达17Hz。参考文献[47]使用相同道路的雷达扫描数据构建参考地图。然后,使用迭代最近点(ICP)来匹配雷达图像以估计车辆位置。最后,应用EKF平滑估计。由于所需的映射数据的大小较小,该技术减少了地图匹配的计算负载。然而,挑战在于需要从传感器的相同模型中获取最新数据,并从与参考相同的道路中获取样本,以进行匹配。


此外,参考文献[53]设计了一种车载定位探地雷达(LGPR)系统,以构建道路地下地图。该系统可以抵抗复杂天气的信号干扰,因为它的雷达安装在底盘下,用于扫描地面。此外,它可以实现高精度(RMSE为12.7cm)和出色的实时性能(~126Hz刷新率)。然而,作者还提到,LGPR阵列的高度需要进一步降低,以适应更多的乘用车。


基于超声波的定位


由于低成本的超声波传感器,基于超声波的定位被广泛用于室内机器人定位。然而,短的检测距离和对环境温度、湿度和灰尘的敏感性都限制了超声波传感器在AV定位中的广泛应用[54],[55]。Moussa等人[56]使用EKF算法实现了基于超声波的辅助导航解决方案。当GPS无法限制车辆位置的漂移并增强系统的鲁棒性时,该解决方案使用超声波传感器作为定位的主要传感器。它可以实现出色的实时性能(约92Hz刷新率),但位置误差高达7.11m。Jung等人[13]使用超声波传感器、编码器、陀螺仪和数字磁罗盘,以及SLAM方法来估计车辆的绝对位置。该方法的平均位置更新时间长达10.65s。此外,长时间的SLAM计算过程可能会导致定位系统在位置更新之前由IMU导致的一些累积误差。因此,能够满足位置精度要求的平均行驶距离仅约为5.2m。总之,基于超声的定位技术可以实现低成本和低功耗的定位系统。然而,它的定位精度和鲁棒性仍然不能满足自动驾驶的要求。


讨论


基于激光雷达的地图匹配技术中的准确和鲁棒的特征检测方法可以提高AV定位的准确性和鲁棒性[57]。总之,就基于激光雷达的1D地图匹配技术而言,由于该方法仅采用少数异形线作为特征,例如参考文献[31]和[32]中所示的垂直角,因此特征配准中的计算负载和内存使用量较低。然而,这种方法需要解决路边没有垂直建筑物的情况下的挑战。与1D地图相比,2D地图包含丰富的特征类型,但增加了地图存储空间。基于强度的2D地图方法可以增强积雪路面场景中的道路表示。基于混合地图的算法可以减少内存使用,并解决实时性能和定位精度之间的权衡,例如参考文献[38]中所示的拓扑度量地图。基于3D地图的匹配算法可以获得受益于3D特征的准确和鲁棒的位置。然而,与基于1D地图和2D地图的方法相比,它需要最大的计算资源,这将增加AV定位系统的部署成本。与基于高成本激光雷达的定位相比,雷达是一种经济高效的解决方案,但毫米波雷达获得的环境模型分辨率低,且缺乏物体高度信息,使得定位系统难以实现鲁棒性和准确性。目前,雷达被广泛用作辅助定位传感器,以检测车辆与障碍物之间的距离。超声波传感器的检测范围(约3m)决定了基于超声波的定位主要用于短距离定位应用,例如自动停车,其中几个参考目标位于近距离。


4基于被动传感器的定位



基于GPS的定位


GPS可以为AV提供低成本、高效的定位解决方案。然而,GPS经常受到城市中NLOS、多径或信号阻塞的影响,所有这些都对提供可靠车辆定位的目标提出了挑战[58],[59]。


当前主流的基于GPS的定位通过位置校正技术提高了准确性和可靠性,包括融合来自不同来源的测量[60]、过滤异常信号[61]和地图辅助[62]。参考文献[63]通过融合来自其他来源(包括GPS、RFID和V2V)的测量结果,改进了基于GPS的定位。作者分析了不同数据源的准确性,并过滤掉了冗余连接。它们只保留具有期望精度的连接,以在GPS降级环境中实现鲁棒性要求。所提出方法的位置精度约为2.9m,计算复杂度约为[64]的0.8%。参考文献[61]提出了一种GPS异常信号识别处理框架,以提高基于GPS的定位的鲁棒性。该框架可以根据原始GPS的质量决定输出原始GPS、估计GPS或去除异常信号的GPS。与前两种技术不同,Lu等人[65]通过匹配低精度开源地图来提高GPS精度。然而,该方法的局限性在于难以提取道路交叉口中的车道标记特征。同时,[66]通过去除异常GPS信号并结合数字地图的地形高度辅助,提出了一种基于全球导航卫星系统(GNSS)的定位方法。参考文献[67]通过匹配NLOS信号延迟提高了GNSS精度。尽管如此,[66]和[67]的位置RMS误差在城市场景中仍高达约10m。总之,使用独立GPS接收机实现可靠、准确的车辆定位是困难的。


基于IMU的定位


IMU是惯性导航系统(INS)的一个组件,可以测量加速度和俯仰率,并具有强大的抗干扰能力[68]。然而,由于累积误差的缺点,自动驾驶系统不能使用IMU计算长距离的位置。在这种情况下,IMU被广泛用作备用传感器或融合源之一,以确保主定位传感器短时中断时的连续定位[69]。


参考文献[70]提出使用基于航位推算(DR)的紧密耦合(TC)方案来提高城市中的精度性能。参考文献[71]使用具有异常GPS测量抑制的修正TC,以在GPS无效环境下实现连续定位。Wang等人[72]提出了一种基于一组自回归、移动平均预测模型和占用网格约束的方案,以进一步提高定位精度;该方案还可以减少DR系统的累积误差和GPS上的多径干扰。其他相关算法[73]-[76]可以参考具体论文。除DR方法外,IMU输出的俯仰率信号的模式识别也可用于计算车辆位置。该方法的原理是通过分析俯仰率信号来提取车辆的振动和运动模式。然后,利用预先构建的索引地图进行模式匹配以进行位置估计。该技术没有累积误差,因此具有合理的精度(约5m)。然而缺点是它很容易受到测量噪声的影响[68],[77],[78]。


基于视觉的定位


基于视觉的定位通常可以达到合理的精度。多核CPU和GPU的普及及其强大的并行图像处理能力的提高缓解了此类定位方法的高计算复杂性带来的压力[79],[80]。


参考文献[81]使用四个鱼眼摄像头、一张预先构建的地图和当前车辆位姿来检测自主停车场景中给定范围内的对称停车标记。然后,将检测结果作为方向标记,以与预先构建的地图匹配。该方法可以实现车辆定位,平行位置误差为0.3米,定位时间为0.04s。Du等人[82]开发了一种改进的序列RANSAC算法,以有效地从图像中提取车道线,用于特征匹配;在具有车道线的场景中,它们实现了大约0.06m的位置误差和0.12s的定位刷新率。参考文献[83]为特征匹配构建了基于道路地标的轻量级3D语义地图,然后最小化残余配准误差以估计车辆位置。该地图可以减少内存使用,这只会导致图像匹配的四次迭代。然而,这种方法的缺点是,当在弯道场景中使用时,仍需要进一步测试。其他相关算法[6]、[84]、[85]、[86]、[87]可以参考具体论文。


同时,参考文献[88]开发了一个拓扑模型,以从参考地图中获得一组接近捕获图像的可能节点。然后,他们将提取的整体特征与最近节点的可能节点进行匹配。最后通过将该节点的特征与图像中的局部特征相关联,以0.45m的位置精度实现了可靠的车辆定位。然而,这种方法受到照明灵敏度的影响,这可能导致定位失败。参考文献[89]提出了一种扩展的赫尔普查变换方法,用于从全方位图像数据集进行语义描述和特征提取,以构建拓扑图。通过结合基于内容和特征的图像检索方法进行场景识别,该工作通过将识别结果与拓扑图匹配,在变化的亮度和动态障碍场景中实现了约85.5%置信度的鲁棒定位。然而,这种技术的挑战在于其位置刷新周期长达2秒。


讨论


总之,基于无源传感器的定位技术的分析显示了获得低成本AV定位的显著优势。然而,需要注意的是,独立的无源传感器不能满足精度和鲁棒性要求。GPS经常受到城市中NLOS、多径或信号阻塞的影响,这对定位的一致性和完整性提出了挑战。通过融合来自不同来源的GPS测量、缺陷信号边界和地图辅助,可以改进基于GPS的定位。当GPS信号不可用时,DR系统可以提供实时一致的车辆位置。例如,如[9]所示,基于DR的IMM方法减少了系统漂移,提高了GPS中断或GPS信号模块环境中的定位鲁棒性和完整性。然而,基于GPS和基于IMU的定位仍然需要进一步提高GPS-IMU信号长期异常情况下的精度、一致性和完整性性能。基于视觉的定位可以实现0.14米的定位RMSE。但合理的定位时间通常要求系统配备GPU以加速。此外,相机在照明不足或恶劣天气(如雾和雨)条件下的可靠性仍需进一步研究。上述讨论表明,通过融合多个低成本传感器,数据融合技术将成为实现成本高效定位解决方案的趋势。同时,参考文献[90]–[93]中关于传感器故障检测和识别方法的最新研究表明,在提高定位鲁棒性方面具有显著优势,如基于IMM的故障识别方法、基于多模型和模糊逻辑的故障检测方法等。未来的研究需要集中于这些技术和缺陷数据建模方法。


原文首发微信公众号【自动驾驶之心】:一个专注自动驾驶与AI的社区(https://mp.weixin.qq.com/s/NK-0tfm_5KxmOfFHpK5mBA

相关文章
|
7月前
|
机器学习/深度学习 数据采集 人工智能
AI 大模型在穿戴设备健康中的心率深度融合
AI 大模型在穿戴设备健康中的心率深度融合
78 0
|
存储 自动驾驶 安全
基于轨迹优化的自动驾驶汽车跟随自行车模型动力学控制(Matlab代码实现)
基于轨迹优化的自动驾驶汽车跟随自行车模型动力学控制(Matlab代码实现)
126 0
|
机器学习/深度学习 人工智能 自动驾驶
3D车道线检测能否成为自动驾驶的核心?盘一盘近三年的SOTA论文!(上)
车道线检测是自动驾驶与计算机视觉领域中的重要研究方向,3D车道线任务更是近几年的研究热点,下面为大家盘点下近三年的一些工作!
3D车道线检测能否成为自动驾驶的核心?盘一盘近三年的SOTA论文!(上)
|
机器学习/深度学习 编解码 人工智能
3D车道线检测能否成为自动驾驶的核心?盘一盘近三年的SOTA论文!(下)
车道线检测是自动驾驶与计算机视觉领域中的重要研究方向,3D车道线任务更是近几年的研究热点,下面为大家盘点下近三年的一些工作!
3D车道线检测能否成为自动驾驶的核心?盘一盘近三年的SOTA论文!(下)
|
传感器 机器学习/深度学习 算法
基于时空预留方案的十字路口交通自动调节智能交通管理系统附matlab代码
基于时空预留方案的十字路口交通自动调节智能交通管理系统附matlab代码
|
传感器 机器学习/深度学习 编解码
盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(下)
与基于激光雷达的定位相比,基于视觉和数据融合的定位技术在提高精度方面的潜力约为2–5倍。基于激光雷达和视觉的定位可以通过提高图像配准方法的效率来降低计算复杂性。与基于激光雷达和视觉的定位相比,基于数据融合的定位可以实现更好的实时性能,因为每个独立传感器不需要开发复杂的算法来实现其最佳定位潜力。V2X技术可以提高定位鲁棒性。最后,讨论了基于定量比较结果的AVs定位的潜在解决方案和未来方向。
盘一盘!实时自动驾驶车辆定位技术都有哪些?(视觉/Lidar/多传感器数据融合)(下)
|
机器学习/深度学习 传感器 存储
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(下)
本文的工作部分受到了Malik等人在[5]中的工作的启发。这项工作的作者提出,计算机视觉的核心问题是重建、识别和重组,他们称之为计算机视觉的3R。在此,论文建议将计算机视觉的3R扩展并专门化为自动驾驶计算机视觉的4R:重建、识别、重组和重新定位。
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(下)
|
传感器 机器学习/深度学习 人工智能
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(上)
本文的工作部分受到了Malik等人在[5]中的工作的启发。这项工作的作者提出,计算机视觉的核心问题是重建、识别和重组,他们称之为计算机视觉的3R。在此,论文建议将计算机视觉的3R扩展并专门化为自动驾驶计算机视觉的4R:重建、识别、重组和重新定位。
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(上)
|
传感器 机器学习/深度学习 人工智能
为什么只用摄像头和光学雷达是不够的:我们能从Uber的自动驾驶车致死事件中学到什么
3 月 18 日星期天晚十点左右,Uber 的一辆自动驾驶 SUV 在美国亚利桑那州坦佩市的街道上造成了一起交通致死事故。坦佩市的警方证实,在事故发生时,该 SUV 处于自动驾驶模式并撞上了一名推着自行车横穿马路的女士。这名女士在医院抢救无效后去世。
267 0
为什么只用摄像头和光学雷达是不够的:我们能从Uber的自动驾驶车致死事件中学到什么
|
数据采集 边缘计算 自动驾驶
厘米级实时定位!自动驾驶梦之队跃上云端
在高级别辅助驾驶领域,高精地图的重要性不言而喻。深耕高精地图市场,面向整车厂、物流公司和互联网出行服务商提供“持续赋能”的动态服务,DeepMap高深智图就是其中的佼佼者。
1268 0