Python 填补缺失值 Pandas SimpleImputer 随机森林模型 (机器学习)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Python 填补缺失值 Pandas SimpleImputer 随机森林模型 (机器学习)

✌ 填补缺失值

1、✌ 导入相关库

import pandas as pd
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestRegressor

2、✌ 创建数据

x=np.random.randint(1,100,(10000,5))
y=np.random.randint(1,10,10000)
rows=np.random.randint(0,1000,20)
cols=np.random.randint(0,5,20)
x=pd.DataFrame(x)
x.iloc[rows,cols]=np.nan

3、✌ 利用Pandas填补数据

x1=x.copy()
for i in x1.columns:
    x1[x1.isnull()]=x1[i].mean()
x1.isnull().sum()

4、✌ sklearn库填补

from sklearn.impute import SimpleImputer
sim=SimpleImputer(missing_values=np.nan,strategy='constant',fill_value=0)
x2=x.copy()
x2=sim.fit_transform(x2)
pd.DataFrame(x2).isnull().sum()

5、✌ 利用模型预测

from sklearn.ensemble import RandomForestRegressor  
x3= x.copy()
sortindex = np.argsort(x3.isnull().sum(axis=0)).values
for i in sortindex:
    #构建我们的新特征矩阵和新标签
    df = x3
    fillc = df.iloc[:,i]
    df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y)],axis=1)
    #在新特征矩阵中,对含有缺失值的列,进行0的填补
    df_0 =SimpleImputer(missing_values=np.nan,
                        strategy='constant',
                        fill_value=0).fit_transform(df)
    #找出我们的训练集和测试集
    y_train = fillc[fillc.notnull()]
    y_test = fillc[fillc.isnull()]
    x_train = df_0[y_train.index,:]
    x_test = df_0[y_test.index,:]
    clf = RandomForestRegressor(n_estimators=100)
    clf = clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    #将填补好的特征返回到我们的原始的特征矩阵中
    x3.loc[x3.iloc[:,i].isnull(),i] = y_pred
x3.isnull().sum()


目录
相关文章
|
1月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
116 7
|
3月前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
197 88
|
1月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
1月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
2月前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
106 9
Python与机器学习:使用Scikit-learn进行数据建模
|
5月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
101 0
|
5月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
195 0
|
22天前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
319 6
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
83 6

热门文章

最新文章

相关产品

  • 人工智能平台 PAI
  • 下一篇
    oss创建bucket