Python 填补缺失值 Pandas SimpleImputer 随机森林模型 (机器学习)

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: Python 填补缺失值 Pandas SimpleImputer 随机森林模型 (机器学习)

✌ 填补缺失值

1、✌ 导入相关库

import pandas as pd
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestRegressor

2、✌ 创建数据

x=np.random.randint(1,100,(10000,5))
y=np.random.randint(1,10,10000)
rows=np.random.randint(0,1000,20)
cols=np.random.randint(0,5,20)
x=pd.DataFrame(x)
x.iloc[rows,cols]=np.nan

3、✌ 利用Pandas填补数据

x1=x.copy()
for i in x1.columns:
    x1[x1.isnull()]=x1[i].mean()
x1.isnull().sum()

4、✌ sklearn库填补

from sklearn.impute import SimpleImputer
sim=SimpleImputer(missing_values=np.nan,strategy='constant',fill_value=0)
x2=x.copy()
x2=sim.fit_transform(x2)
pd.DataFrame(x2).isnull().sum()

5、✌ 利用模型预测

from sklearn.ensemble import RandomForestRegressor  
x3= x.copy()
sortindex = np.argsort(x3.isnull().sum(axis=0)).values
for i in sortindex:
    #构建我们的新特征矩阵和新标签
    df = x3
    fillc = df.iloc[:,i]
    df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y)],axis=1)
    #在新特征矩阵中,对含有缺失值的列,进行0的填补
    df_0 =SimpleImputer(missing_values=np.nan,
                        strategy='constant',
                        fill_value=0).fit_transform(df)
    #找出我们的训练集和测试集
    y_train = fillc[fillc.notnull()]
    y_test = fillc[fillc.isnull()]
    x_train = df_0[y_train.index,:]
    x_test = df_0[y_test.index,:]
    clf = RandomForestRegressor(n_estimators=100)
    clf = clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    #将填补好的特征返回到我们的原始的特征矩阵中
    x3.loc[x3.iloc[:,i].isnull(),i] = y_pred
x3.isnull().sum()


目录
相关文章
|
19天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
3天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
23天前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
49 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
12天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
30 12
|
19天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
38 8
|
19天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
41 6
|
22天前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
23天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
24天前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
38 0
|
24天前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
36 0

热门文章

最新文章

相关产品

  • 人工智能平台 PAI