m基于rbf神经网络和遗传算法优化的MIMO-OFDM系统信道估计算法matlab仿真

简介: m基于rbf神经网络和遗传算法优化的MIMO-OFDM系统信道估计算法matlab仿真

1.算法描述

   MIMO-OFDM的信道估计:时,频,空三个域都要考虑,尤其是在空域,不同天线发射的导频序列需要相互正交,否则在接收端无法区分各个导频,造成导频污染,就无法正确地估计信道。正交的方法有很多,可以是时间上错开,在某个时间只允许某个天线发送。也可以在频率上错开。还可以让导频信号本身就是正交的(例如Alamouti coding)。如下图所示:

1.png

    算法上的区别我不是很清楚了,不是研究这一块,太深的也不懂。但常用的信道估计算法比如LS/ML估计,LMMSE估计都可以用,只是形式上有点变化。值得一提的是,配备了OFDM的MIMO系统,往往工作在频率选择性衰落信道中,一般称为宽带MIMO系统,在某种程度上其信道估计比平衰落信道中的窄带MIMO要容易。因为导频在空域的正交使得我们仅需要将多对收发天线考虑成多个单对收发天线即可,也就是说可以将MIMO系统变为SISO系统来分析。

    MIMO-OFDM系统模型的接收端原理图如图4所示。即各个接收天线收到相应的OFDM符号后,先进行时频同步处理,然后去掉相应的CP,接着进行OFDM解调(FFT),最后根据信道估计的结果进行检测解码,恢复出接收比特流。

2.png

   RBF网络是一种三层前向网络,由输入到输出的映射是非线性的,而隐含层空间到输出空间的映射是线性的,从而大大加快了学习速度并避免局部极小问题。RBF网络结构如下图1所示。

3.png
4.png
5.png

 这里,我们主要是通过对导频序列和已知的导频序列进行神经网络训练,得到一个神经网络,对输入的新号进行实时的预测和估计。最后得到所要的接受信号。我们再介绍使用改进后的遗传算法对RBF神经网络进行优化,并进行信道估计的方法。

   遗传算法(Genetic Algorithm-GA)是一种基于自然选择和基因遗传学原理的优化搜索方法。它将“优胜劣汰,适者生存”的生物进化原理引入待优化参数形成的编码串群体中,按照一定的适配值函数及一系列遗传操作对各个体进行筛选,从而使适配值高的个体被保留下来,组成新的群体,新群体中各个体适应度不断提高,直至满足一定的极限条件。此时,群体中适配值最高的个体即为待优化参数的最优解。正是由于遗传算法独具的工作原理,使它能够在复杂空间进行全局优化搜索,并且具有较强的鲁棒性。

   遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,具有以下特点:

(1)以决策变量的编码作为运算对象。传统的优化算法往往直接利用决策变量的实际值本身来进行优化计算,但遗传算法是使用决策变量的某种形式的编码作为运算对象。这种对决策变量的编码处理方式,使得我们在优化计算中可借鉴生物学中染色体和基因等概念,可以模仿自然界中生物的遗传和进化激励,也可以很方便地应用遗传操作算子。
(2)直接以适应度作为搜索信息。传统的优化算法不仅需要利用目标函数值,而且搜索过程往往受目标函数的连续性约束,有可能还需要满足“目标函数的导数必须存在”的要求以确定搜索方向。遗传算法仅使用由目标函数值变换来的适应度函数值就可确定进一步的搜索范围,无需目标函数的导数值等其他辅助信息。直接利用目标函数值或个体适应度值也可以将搜索范围集中到适应度较高部分的搜索空间中,从而提高搜索效率。
(3)使用多个点的搜索信息,具有隐含并行性。传统的优化算法往往是从解空间的一个初始点开始最优解的迭代搜索过程。单个点所提供的搜索信息不多,所以搜索效率不高,还有可能陷入局部最优解而停滞;遗传算法从由很多个体组成的初始种群开始最优解的搜索过程,而不是从单个个体开始搜索。对初始群体进行的、选择、交叉、变异等运算,产生出新一代群体,其中包括了许多群体信息。这些信息可以避免搜索一些不必要的点,从而避免陷入局部最优,逐步逼近全局最优解。
(4) 使用概率搜索而非确定性规则。传统的优化算法往往使用确定性的搜索方法,一个搜索点到另一个搜索点的转移有确定的转移方向和转移关系,这种确定性可能使得搜索达不到最优店,限制了算法的应用范围。遗传算法是一种自适应搜索技术,其选择、交叉、变异等运算都是以一种概率方式进行的,增加了搜索过程的灵活性,而且能以较大概率收敛于最优解,具有较好的全局优化求解能力。但,交叉概率、变异概率等参数也会影响算法的搜索结果和搜索效率,所以如何选择遗传算法的参数在其应用中是一个比较重要的问题。

  综上,由于遗传算法的整体搜索策略和优化搜索方式在计算时不依赖于梯度信息或其他辅助知识,只需要求解影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架。它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于各种领域,包括:函数优化、组合优化生产调度问题、自动控制

、机器人学、图像处理(图像恢复、图像边缘特征提取…)、人工生命、遗传编程、机器学习。

2.仿真效果预览
matlab2022a仿真结果如下:

6.png
7.png
8.png

3.MATLAB部分代码预览

Ta_num              = 2;%发送天线数目
Ra_num              = 2;%接收天线数目
%导频
mod_type            = 'QPSK';
IFFT_len            = 64;
Carriers            = 50;
bits_symbol         = 2;
symbols_per_carrier = 12;
%导频间隔
interval            = 5 ; 
Np                  = ceil(Carriers/interval)+1;
N_number            = Carriers*symbols_per_carrier*bits_symbol;
carriers            = 1:Carriers+Np;
%保护间隔长度
Cps                 = 8;             
SNR                 = [-8:2:20];   
%蒙特卡洛的仿真思路,每次SNR循环多次计算平均
Stimes              = 100;
X  = zeros(1,N_number);
X1 = [];
X2 = [];
X3 = [];
X4 = [];
X5 = [];
X6 = [];
X7 = [];
Y1 = [];
Y2 = [];
Y3 = [];
Y4 = [];
Y5 = [];
Y6 = [];
Y7 = [];
Y70   = [];
Y7_ZJ = [];
XX       = zeros(1,N_number);
dif_bit  = zeros(1,N_number);
 
for tt = 1:20
    tt
    %产生二进制随即序列
    X                           = func_signal_gen(N_number,Carriers);
    %QPSK调制
    [X1,X_initial]              = func_QPSK(X,N_number);
    %导频
    [pilot,training_symbols]    = func_pilot(symbols_per_carrier,Np,interval,Carriers);
    %串并
    X2                          = reshape(X1,symbols_per_carrier,Carriers);
    %插入导频
    [X3,signal]                 = func_pilot_insert(X2,pilot,Carriers,Np,training_symbols);
    %IFFT
    IFFT_modulation             = zeros(symbols_per_carrier,IFFT_len);
    IFFT_modulation(:,carriers) = X3;
    X4                          = ifft(IFFT_modulation,IFFT_len,2);
    %加循环前缀
    X6                          = func_cp(X4,symbols_per_carrier,IFFT_len,Cps);
    %并串
    X7                          = reshape(X6.',1,symbols_per_carrier*(IFFT_len+Cps));
    %信道
    Tx_data                     = func_multipath_channel(X7,Carriers,Ta_num,Ra_num);
    %设置由中继节点转换的信号
    %如果是多个中继,那么选择功率最大的一个,因此,本质就是选择计算一个中继点
    %所以这里就设置一个中继点来计算
    Tx_data_ZJ                  = func_multipath_channel_DJ(X7,Carriers,Ta_num,Ra_num);
    %高斯白噪声
    Error_ber  = [];
    for snr_db = SNR
        snr_db
%         RandStream.setDefaultStream(RandStream('mt19937ar','seed',tt));
        code_power  = 0;
        code_power  = [norm(Tx_data)]^2/(length(Tx_data));
        bit_power   = code_power/bits_symbol; 
        noise_power = 10*log10((bit_power/(10^(snr_db/10))));
        noise1      = wgn(1,length(Tx_data),noise_power,'complex');
%         RandStream.setDefaultStream(RandStream('mt19937ar','seed',tt+1));
        code_power  = 0;
        code_power  = [norm(Tx_data)]^2/(length(Tx_data));
        bit_power   = code_power/bits_symbol; 
        noise_power = 10*log10((bit_power/(10^(snr_db/10))));
        noise2      = wgn(1,length(Tx_data),noise_power,'complex');  
        %最后接收到的信号
        Y70         = Tx_data+noise1;
        %中继接收到的信号
        Y7_ZJ       = Tx_data_ZJ+noise2;
        %MRC接收
        Y7          = Y70+Y7_ZJ;
        %串并变换
        Y6          = reshape(Y7,IFFT_len+Cps,symbols_per_carrier).';
        %去保护间隔
        Y5          = func_cp_del(Y6,symbols_per_carrier,IFFT_len,Cps);
        %FFT,傅立叶变换
        Y4          = fft(Y5,IFFT_len,2);
        Y3          = Y4(:,carriers);
        %进行信道估计
        %实部
        Y2_real     = func_RBF_channel_est(real(Y3),signal,pilot,symbols_per_carrier,Np,real(training_symbols),Carriers,interval);
        %虚部
        Y2_imag     = func_RBF_channel_est(imag(Y3),signal,pilot,symbols_per_carrier,Np,imag(training_symbols),Carriers,interval);
        Y2          = Y2_real +sqrt(-1)*Y2_imag;
        YY1         = reshape(Y2,N_number/bits_symbol,1);
        %QPSK解调
        [y_real1,y_image1,y_re1,y_im1] = func_deqpsk(YY1);
        r01 = [];
        r11 = [];
        for k=1:length(y_re1);
            r11 = [r11,[y_re1(k),y_im1(k)]];
        end     
        dif_bit1        = round(X_initial - r11); 
        ber_snr1=0;
        for k=1:N_number;
            if dif_bit1(k)~=0;
               ber_snr1=ber_snr1+1;
           end
        end
        Error_ber = [Error_ber,ber_snr1];
    end
    BERs(:,tt) = Error_ber./N_number;
end
Ber_avg = mean(BERs,2);
01_083_m
相关文章
|
4天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
5天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
5天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
5天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
22 3
|
8天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密技术及安全意识的重要性
如今的网络环境中,网络安全威胁日益严峻,面对此类问题,除了提升相关硬件的安全性、树立法律法规及行业准则,增强网民的网络安全意识的重要性也逐渐凸显。本文梳理了2000年以来有关网络安全意识的研究,综述范围为中国知网中篇名为“网络安全意识”的期刊、硕博论文、会议论文、报纸。网络安全意识的内涵是在“网络安全”“网络安全风险”等相关概念的发展中逐渐明确并丰富起来的,但到目前为止并未出现清晰的概念界定。此领域内的实证研究主要针对网络安全意识现状与问题,其研究对象主要是青少年。网络安全意识教育方面,很多学者总结了国外的成熟经验,但在具体运用上仍缺乏考虑我国的实际状况。 内容目录: 1 网络安全意识的相关
|
1天前
|
安全 网络安全 API
揭秘网络世界的守护神:网络安全与信息安全的深度剖析
【10月更文挑战第36天】在数字时代的洪流中,网络安全和信息安全如同守护神一般,保护着我们的数据不受侵犯。本文将深入探讨网络安全漏洞的成因、加密技术的奥秘以及提升个人安全意识的重要性。通过分析最新的攻击手段、介绍先进的防御策略,并分享实用的安全实践,旨在为读者呈现一个全方位的网络安全与信息安全知识图谱。让我们一同揭开网络世界的神秘面纱,探索那些不为人知的安全秘籍。
13 6
|
2天前
|
SQL 安全 算法
网络安全与信息安全:漏洞、加密与意识的交织
【10月更文挑战第35天】在数字化时代,网络安全不再是可选项,而是每个网民的必修课。本文旨在深入探讨网络安全的核心要素,包括常见的安全漏洞、先进的加密技术以及不可或缺的安全意识。通过分析这些方面,我们将揭示如何保护个人和组织免受网络攻击的策略,同时提供实用的代码示例,以增强读者的实践能力。文章将引导您思考如何在日益复杂的网络环境中保持警惕,并采取积极措施以确保数据的安全。
14 4
|
1天前
|
SQL 安全 物联网
网络安全与信息安全:深入探讨网络漏洞、加密技术及安全意识###
网络安全与信息安全是当今数字化时代的重要议题。本文将详细探讨网络安全和信息安全的差异,重点介绍常见的网络漏洞、加密技术以及如何提升用户和组织的安全意识。通过具体案例和技术分析,帮助读者理解这些关键概念,并提供实用的建议以应对潜在的网络威胁。 ###
|
2天前
|
SQL 安全 网络安全
网络安全与信息安全:漏洞、加密与安全意识的交织
在数字化时代,网络安全和信息安全的重要性日益凸显。本文深入探讨了网络安全漏洞、加密技术以及安全意识等关键要素,分析了它们之间的相互作用和对维护网络安全的影响。通过实例和代码示例,揭示了网络攻击的常见手段,展示了如何利用加密技术保护数据,以及提升个人和组织的安全意识。本文旨在为读者提供有价值的信息和建议,帮助在复杂的网络环境中更好地保护自己的数字资产。
|
4天前
|
监控 安全 网络安全
企业网络安全:构建高效的信息安全管理体系
企业网络安全:构建高效的信息安全管理体系
23 5
下一篇
无影云桌面