【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例

简介: 【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例

1. 加载数据

import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

关注公众号:阿旭算法与机器学习,回复:“ML30”即可获取本文数据集、源码与项目文档,欢迎共同学习交流

#读取数据
df = pd.read_csv('data.csv')
df  # data frame

2.特征工程

2.1 数据编码

# 把颜色独热编码
df_colors = df['Color'].str.get_dummies().add_prefix('Color: ')
# 把类型独热编码
df_type = df['Type'].apply(str).str.get_dummies().add_prefix('Type: ')
# 添加独热编码数据列
df = pd.concat([df, df_colors, df_type], axis=1)
# 去除独热编码对应的原始列
df = df.drop(['Brand', 'Type', 'Color'], axis=1)
df

# 特征热力图
matrix = df.corr()
f, ax = plt.subplots(figsize=(8, 6))
sns.heatmap(matrix, square=True)
plt.title('Car Price Variables')
# 特征两两组合,观察相关性
sns.pairplot(
    df[['Construction Year', 'Days Until MOT', 'Odometer', 'Ask Price']],size=2)
plt.show()

热图中,黑色表示负相关,白色表示正相关。通过解读以上两张图,选择相关性较大的特征,对模型进行训练。

3.构建模型进行训练与评估

3.1 构建模型并训练

# -*- coding: utf-8 -*-
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df = pd.read_csv('D:/data.csv')
df_colors = pd.get_dummies(df['Color'], prefix='Color:')
df_type = pd.get_dummies(df['Type'].apply(str), prefix='Type:')
df = pd.concat([df, df_colors, df_type], axis=1)
df.drop(['Brand', 'Type', 'Color'], axis=1, inplace=True)
# 准备样本数据,选取'Construction Year', 'Days Until MOT', 'Odometer'这样个特征进行模型训练
X = df[['Construction Year', 'Days Until MOT', 'Odometer']]
y = df['Ask Price'].values.reshape(-1, 1)
# 生成训练及测试数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=41)
# 特征缩放--标准化
X_normalizer = StandardScaler()  # N(0,1)
X_train = X_normalizer.fit_transform(X_train)  # 对训练特征数据进行拟合并归一
X_test = X_normalizer.transform(X_test)  # 在对训练特征数据拟合之后应用到测试数据上
y_normalizer = StandardScaler()
y_train = y_normalizer.fit_transform(y_train)
y_test = y_normalizer.transform(y_test)
# 训练模型,由于此处是回归问题,不用设置成奇数
knn = KNeighborsRegressor(n_neighbors=2)
knn.fit(X_train, y_train.ravel())  # ravel 转换为一维数组
# 预测价格
y_pred = knn.predict(X_test)
# 由于之前对标签数组做过归一化,所以现在需要反向归一,还原成真实值
y_pred_inv = y_normalizer.inverse_transform(y_pred)
y_test_inv = y_normalizer.inverse_transform(y_test)
# Build a plot
plt.scatter(y_pred_inv, y_test_inv)
plt.xlabel('Prediction')
plt.ylabel('Real value')
# Now add the perfect prediction line
diagonal = np.linspace(500, 1500, 100)  # linspace()指定的间隔内返回均匀间隔的数字
plt.plot(diagonal, diagonal, '-r')  # -:直线 r:红色
plt.xlabel('Predicted ask price')
plt.ylabel('Ask price')
plt.show()

3.2 模型评估

knn
KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
          metric_params=None, n_jobs=None, n_neighbors=2, p=2,
          weights='uniform')
pred = knn.predict(X_test)
pred
array([ 1.36676513,  1.36676513, -0.68269804,  0.13462294])
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_pred_inv, y_test_inv)
175.5
from sklearn.metrics import mean_squared_error
mean_squared_error(y_pred_inv, y_test_inv)
56525.5
y_pred_inv
array([1199., 1199.,  700.,  899.])
y_test_inv
array([[1300.],
       [1650.],
       [ 650.],
       [ 799.]])


相关文章
|
6天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
31 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
61 5
|
24天前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
71 0
|
27天前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
38 0
|
23天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
71 4
|
2天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
13 2
|
19天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
38 1
|
28天前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
81 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型