Description
Given an array of citations sorted in ascending order (each citation is a non-negative integer) of a researcher, write a function to compute the researcher's h-index.
According to the definition of h-index on Wikipedia: "A scientist has index h if h of his/her N papers have at least h citations each, and the other N − h papers have no more than h citations each."
Example:
Input: citations = [0,1,3,5,6]
Output: 3
Explanation: [0,1,3,5,6] means the researcher has 5 papers in total and each of them had
received 0, 1, 3, 5, 6 citations respectively.
Since the researcher has 3 papers with at least 3 citations each and the remaining
two with no more than 3 citations each, her h-index is 3.
Note:
If there are several possible values for h, the maximum one is taken as the h-index.
Follow up:
This is a follow up problem to H-Index, where citations is now guaranteed to be sorted in ascending order.
Could you solve it in logarithmic time complexity?
Seen this question in a real interview before?
描述
给定一位研究者论文被引用次数的数组(被引用次数是非负整数),数组已经按照升序排列。编写一个方法,计算出研究者的 h 指数。
h 指数的定义: “h 代表“高引用次数”(high citations),一名科研人员的 h 指数是指他(她)的 (N 篇论文中)至多有 h 篇论文分别被引用了至少 h 次。(其余的 N - h 篇论文每篇被引用次数不多于 h 次。)"
示例:
输入: citations = [0,1,3,5,6]
输出: 3
解释: 给定数组表示研究者总共有 5 篇论文,每篇论文相应的被引用了 0, 1, 3, 5, 6 次。
由于研究者有 3 篇论文每篇至少被引用了 3 次,其余两篇论文每篇被引用不多于 3 次,所以她的 h 指数是 3。
说明:
如果 h 有多有种可能的值 ,h 指数是其中最大的那个。
进阶:
这是 H指数 的延伸题目,本题中的 citations 数组是保证有序的。
你可以优化你的算法到对数时间复杂度吗?
思路
- 使用二分查找.
- 二分查找的需要判断要找的元素是在当前元素的左边还是在当前元素的右边.
- 我们用middle表示每次比较的元素的索引,count-middle 表示从middle往后数(包括)的元素个数,由于元素是按照递增排列的,如果当前元素大于等于count-middle说明存在count-middle个元素大于citations[milldle],我们将right置为middle-1.
- 如果当前元素小于count-middle说明count-middle个元素大于citations[milldle]不成立,我们要缩小元素的个数,我们将left置为middle+1.
- 最后count-left就是h元素的个数.
# -*- coding: utf-8 -*- # @Author: 何睿 # @Create Date: 2019-02-05 12:27:25 # @Last Modified by: 何睿 # @Last Modified time: 2019-02-05 19:58:17 class Solution: def hIndex(self, citations: 'List[int]') -> 'int': # 如果给定的数组为空,返回0 if not citations: return 0 count = len(citations) # 采用二分查找的思想 left, right, milldle = 0, count - 1, 0 while left <= right: # 去掉左边的所有非零项 while left < count and citations[left] == 0: left += 1 milldle = ((right - left) >> 1) + left # 如果当前位置元素值大于等于从当前位置往后数(包括当前元素)的元素个数 if citations[milldle] >= (count - milldle): right = milldle - 1 # 如果当前位置元素值小于从当前位置往后数(包括当前元素)的元素个数 elif citations[milldle] < (count - milldle): left = milldle + 1 # 返回元素个数 return count - left
源代码文件在这里.