[LeetCode] H-Index

简介: If you've read the Wikipedia article of H-Index, there is already a neat formula there for computing the h-index, which is written below using the notations of the problem.

If you've read the Wikipedia article of H-Index, there is already a neat formula there for computing the h-index, which is written below using the notations of the problem. Note that in the formula below, citations is sorted in descending order and i is 1-indexed.

h = max_i(min(i, citations[i]))

Now you will easily write down the following code.

 1 class Solution {
 2 public:
 3     int hIndex(vector<int>& citations) {
 4         sort(citations.rbegin(), citations.rend());
 5         int h = 0, i = 0;
 6         for (int c : citations)
 7             h = max(h, min(++i, c));
 8         return h;
 9     }
10 };

This code takes 20ms. In fact, rbegin and rend seems to be relatively slow. An alternative is to sort citations in normal ascending order and then count all those papers with citations larger than their indexes, as what Stefan does here. Now the code runs in 12ms.

 1 class Solution {
 2 public:
 3     int hIndex(vector<int>& citations) {
 4         sort(citations.begin(), citations.end()); 
 5         int h = 0, i = citations.size();
 6         for (int c : citations)
 7             h += (c > --i);
 8         return h;
 9     }
10 };

Well, both the above codes are in O(nlogn) time. Is there a linear time solution? The answer is yes: refer to this post if you like :-)

 1 class Solution {
 2 public:
 3     int hIndex(vector<int>& citations) {
 4         int n = citations.size(), h = 0;
 5         int* counts = new int[n + 1]();
 6         for (int c : citations)
 7             counts[min(c, n)]++;
 8         for (int i = n; i; i--) {
 9             h += counts[i];
10             if (h >= i) return i;
11         } 
12         return h;
13     }
14 };

This code uses both linear time and space, and runs in 8ms. Wow, we've moved a long way from the original 20ms version :-)

目录
相关文章
|
算法 索引
LeetCode 275. H-Index II
给定一位研究者论文被引用次数的数组(被引用次数是非负整数),数组已经按照升序排列。编写一个方法,计算出研究者的 h 指数。
92 0
LeetCode 275. H-Index II
LeetCode 274. H-Index
给定一位研究者论文被引用次数的数组(被引用次数是非负整数)。编写一个方法,计算出研究者的 h 指数。
87 0
LeetCode 274. H-Index
|
索引
LeetCode 274 H-Index (H索引)
版权声明:转载请联系本人,感谢配合!本站地址:http://blog.csdn.net/nomasp https://blog.csdn.net/NoMasp/article/details/51753099 翻译 给定一个研究者的引用数(每个引用都是非负数)的数组,写一个函数用于计算研究者的h索引。
895 0
[LeetCode] H-Index
Given an array of citations (each citation is a non-negative integer) of a researcher, write a function to compute the researcher’s h-index. According to the definition of h-index on Wikip
1118 0
[LeetCode] H-Index II
Follow up for H-Index: What if the citations array is sorted in ascending order? Could you optimize your algorithm? Hint: Expected runtime complexity is in O(log n) and the input is sort
1019 0
|
移动开发
[LeetCode] H-Index II
This problem is designed specifically to use binary search. In fact, in H-Index, someone has already used this idea (you may refer to this post :-)) The code is as follows.
731 0
|
2月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
3月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
113 2