​LeetCode刷题实战20:有效括号

简介: 算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !

今天和大家聊的问题叫做有效的括号,我们先来看题面:

https://leetcode-cn.com/problems/valid-parentheses/

Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid. An input string is valid if: Open brackets must be closed by the same type of brackets. Open brackets must be closed in the correct order. Note that an empty string is also considered valid.


题意


给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效。有效字符串需满足:左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。注意空字符串可被认为是有效字符串。

样例

示例 1:
输入: "()"
输出: true
示例 2:
输入: "()[]{}"
输出: true
示例 3:
输入: "(]"
输出: false
示例 4:
输入: "([)]"
输出: false
示例 5:
输入: "{[]}"
输出: true

题解

这道题让我们验证输入的字符串是否为括号字符串,包括大括号,中括号和小括号。这里我们需要用一个栈,我们开始遍历输入字符串,如果当前字符为左半边括号时,则将其压入栈中,如果遇到右半边括号时,若此时栈为空,则直接返回false,如不为空,则取出栈顶元素,若为对应的左半边括号,则继续循环,反之返回false 。注意到有效字符串的长度一定为偶数,因此如果字符串的长度为奇数,我们可以直接返回 False,省去后续的遍历判断过程。复杂度分析

时间复杂度:O(n),其中 n是字符串的长度。

空间复杂度:O(n+∣Σ∣),其中 Σ 表示字符集,本题中字符串只包含 6 种括号,∣Σ∣=6。栈中的字符数量为 O(n),而哈希映射使用的空间为 O(∣Σ∣),相加即可得到总空间复杂度。

class Solution {
    public boolean isValid(String s) {
        int n = s.length();
        if (n % 2 == 1) {
            return false;
        }
        Map<Character, Character> pairs = new HashMap<Character, Character>() {{
            put(')', '(');
            put(']', '[');
            put('}', '{');
        }};
        Deque<Character> stack = new LinkedList<Character>();
        for (int i = 0; i < n; i++) {
            char ch = s.charAt(i);
            if (pairs.containsKey(ch)) {
                if (stack.isEmpty() || stack.peek() != pairs.get(ch)) {
                    return false;
                }
                stack.pop();
            } else {
                stack.push(ch);
            }
        }
        return stack.isEmpty();
    }
}

好了,今天的文章就到这里,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力。

相关文章
|
3月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
302 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
7月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
320 1
|
7月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
338 1
|
7月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
245 0
|
7月前
|
算法 Go 索引
【LeetCode 热题100】回溯:括号生成 & 组合总和(力扣22 / 39 )(Go语言版)
本文深入解析了LeetCode上的两道经典回溯算法题:**22. 括号生成**与**39. 组合总和**。括号生成通过维护左右括号数量,确保路径合法并构造有效组合;组合总和则允许元素重复选择,利用剪枝优化搜索空间以找到所有满足目标和的组合。两者均需明确路径、选择列表及结束条件,同时合理运用剪枝策略提升效率。文章附有Go语言实现代码,助你掌握回溯算法的核心思想。
302 0
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
315 3
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
336 4
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
381 1
LeetCode第22题括号生成
该文章介绍了 LeetCode 第 22 题括号生成的解法,通过回溯算法生成所有可能的括号组合,在递归过程中根据左右括号数量的条件进行剪枝,从而得到有效的括号组合。
LeetCode第22题括号生成