模型选择、过拟合和欠拟合
训练误差和泛化误差
训练误差(training error)指模型在训练数据集上表现出的误差,泛化误差(generalization error)指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。
模型选择
验证数据集
测试集一般只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。我们预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。
K折交叉验证
当训练数据不够用时,预留大量的验证数据是不可取的。一种改善的方法是K折交叉验证(K-fold cross-validation)。在K折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,然后我们做K次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他K-1个子数据集来训练模型。在这K次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这K次训练误差和验证误差分别求平均。
过拟合和欠拟合
接下来,我们将探究模型训练中经常出现的两类典型问题:
- 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);
- 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。
模型复杂度
模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征和对应的标量标签组成的训练数据集,多项式函数拟合的目标是找一个阶多项式函数
来近似 。在上式中,是模型的权重参数,是偏差参数。与线性回归相同,多项式函数拟合也使用平方损失函数。特别地,一阶多项式函数拟合又叫线性函数拟合。
给定训练数据集,模型复杂度和误差之间的关系:
训练数据集大小
影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。
多项式函数拟合实验
%matplotlib inline import torch import numpy as np import sys sys.path.append("/home/input") import d2lzh1981 as d2l
初始化模型参数
n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5 features = torch.randn((n_train + n_test, 1)) poly_features = torch.cat((features, torch.pow(features, 2), torch.pow(features, 3)), 1) #1表示按列拼接 labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1] + true_w[2] * poly_features[:, 2] + true_b) labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float) features[:2], poly_features[:2], labels[:2]
(tensor([[0.7633], [0.1742]]), tensor([[0.7633, 0.5826, 0.4447],[0.1742, 0.0303, 0.0053]]), tensor([6.4205, 5.1422]))
定义、训练和测试模型
def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None, legend=None, figsize=(3.5, 2.5)): # d2l.set_figsize(figsize) d2l.plt.xlabel(x_label) d2l.plt.ylabel(y_label) d2l.plt.semilogy(x_vals, y_vals) if x2_vals and y2_vals: d2l.plt.semilogy(x2_vals, y2_vals, linestyle=':') d2l.plt.legend(legend) num_epochs, loss = 100, torch.nn.MSELoss() def fit_and_plot(train_features, test_features, train_labels, test_labels): # 初始化网络模型 net = torch.nn.Linear(train_features.shape[-1], 1) # 通过Linear文档可知,pytorch已经将参数初始化了,所以我们这里就不手动初始化了 # 设置批量大小 batch_size = min(10, train_labels.shape[0]) dataset = torch.utils.data.TensorDataset(train_features, train_labels) # 设置数据集 train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True) # 设置获取数据方式 optimizer = torch.optim.SGD(net.parameters(), lr=0.01) # 设置优化函数,使用的是随机梯度下降优化 train_ls, test_ls = [], [] for _ in range(num_epochs): for X, y in train_iter: # 取一个批量的数据 l = loss(net(X), y.view(-1, 1)) # 输入到网络中计算输出,并和标签比较求得损失函数 optimizer.zero_grad() # 梯度清零,防止梯度累加干扰优化 l.backward() # 求梯度 optimizer.step() # 迭代优化函数,进行参数优化 train_labels = train_labels.view(-1, 1) test_labels = test_labels.view(-1, 1) train_ls.append(loss(net(train_features), train_labels).item()) # 将训练损失保存到train_ls中 test_ls.append(loss(net(test_features), test_labels).item()) # 将测试损失保存到test_ls中 print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1]) semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss', range(1, num_epochs + 1), test_ls, ['train', 'test']) print('weight:', net.weight.data, '\nbias:', net.bias.data)
线性函数拟合(欠拟合)
fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_
训练样本不足(过拟合)
fit_and_plot(poly_features[0:2, :], poly_features[n_train:, :], label
权重衰减
方法
权重衰减等价于 范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。
L2 范数正则化(regularization)
范数正则化在模型原损失函数基础上添加范数惩罚项,从而得到训练所需要最小化的函数。范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以线性回归中的线性回归损失函数为例
高维线性回归实验从零开始的实现
%matplotlib inline import torch import torch.nn as nn import numpy as np import sys sys.path.append("/home/input") import d2lzh1981 as d2l
初始化模型参数
n_train, n_test, num_inputs = 20, 100, 200 true_w, true_b = torch.ones(num_inputs, 1) * 0.01, 0.05 features = torch.randn((n_train + n_test, num_inputs)) labels = torch.matmul(features, true_w) + true_b labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float) train_features, test_features = features[:n_train, :], features[n_train:, :] train_labels, test_labels = labels[:n_train], labels[n_train:] # 定义参数初始化函数,初始化模型参数并且附上梯度 def init_params(): w = torch.randn((num_inputs, 1), requires_grad=True) b = torch.zeros(1, requires_grad=True) return [w, b]
定义L2范数惩罚项
def l2_penalty(w): return (w**2).sum() / 2
定义训练和测试
batch_size, num_epochs, lr = 1, 100, 0.003 net, loss = d2l.linreg, d2l.squared_loss dataset = torch.utils.data.TensorDataset(train_features, train_labels) train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True) def fit_and_plot(lambd): w, b = init_params() train_ls, test_ls = [], [] for _ in range(num_epochs): for X, y in train_iter: # 添加了L2范数惩罚项 l = loss(net(X, w, b), y) + lambd * l2_penalty(w) l = l.sum() if w.grad is not None: w.grad.data.zero_() b.grad.data.zero_() l.backward() d2l.sgd([w, b], lr, batch_size) train_ls.append(loss(net(train_features, w, b), train_labels).mean().item()) test_ls.append(loss(net(test_features, w, b), test_labels).mean().item()) d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss', range(1, num_epochs + 1), test_ls, ['train', 'test']) print('L2 norm of w:', w.norm().item())
观察过拟合
fit_and_plot(lambd=0)
使用权重衰减
fit_and_plot(lambd=3)
简洁实现
def fit_and_plot_pytorch(wd): # 对权重参数衰减。权重名称一般是以weight结尾 net = nn.Linear(num_inputs, 1) nn.init.normal_(net.weight, mean=0, std=1) nn.init.normal_(net.bias, mean=0, std=1) optimizer_w = torch.optim.SGD(params=[net.weight], lr=lr, weight_decay=wd) # 对权重参数衰减 optimizer_b = torch.optim.SGD(params=[net.bias], lr=lr) # 不对偏差参数衰减 train_ls, test_ls = [], [] for _ in range(num_epochs): for X, y in train_iter: l = loss(net(X), y).mean() optimizer_w.zero_grad() optimizer_b.zero_grad() l.backward() # 对两个optimizer实例分别调用step函数,从而分别更新权重和偏差 optimizer_w.step() optimizer_b.step() train_ls.append(loss(net(train_features), train_labels).mean().item()) test_ls.append(loss(net(test_features), test_labels).mean().item()) d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss', range(1, num_epochs + 1), test_ls, ['train', 'test']) print('L2 norm of w:', net.weight.data.norm().item()) fit_and_plot_pytorch(0) fit_and_plot_pytorch(3)
丢弃法
丢弃法不改变其输入的期望值。让我们对之前多层感知机的神经网络中的隐藏层使用丢弃法,一种可能的结果如图所示,其中和被清零。这时输出值的计算不再依赖和,在反向传播时,与这两个隐藏单元相关的权重的梯度均为0。由于在训练中隐藏层神经元的丢弃是随机的,即都有可能被清零,输出层的计算无法过度依赖中的任一个,从而在训练模型时起到正则化的作用,并可以用来应对过拟合。
简洁实现
net = nn.Sequential( d2l.FlattenLayer(), nn.Linear(num_inputs, num_hiddens1), nn.ReLU(), nn.Dropout(drop_prob1), nn.Linear(num_hiddens1, num_hiddens2), nn.ReLU(), nn.Dropout(drop_prob2), nn.Linear(num_hiddens2, 10) ) for param in net.parameters(): nn.init.normal_(param, mean=0, std=0.01) optimizer = torch.optim.SGD(net.parameters(), lr=0.5) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
参考文献
[1]《动手深度学习》李沐
[2]伯禹教育课程