从零开始学Pytorch(五)之欠拟合和过拟合

简介: 从零开始学Pytorch(五)之欠拟合和过拟合

模型选择、过拟合和欠拟合


训练误差和泛化误差


训练误差(training error)指模型在训练数据集上表现出的误差,泛化误差(generalization error)指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。

模型选择


验证数据集


测试集一般只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。我们预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。

K折交叉验证


当训练数据不够用时,预留大量的验证数据是不可取的。一种改善的方法是K折交叉验证(K-fold cross-validation)。在K折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,然后我们做K次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他K-1个子数据集来训练模型。在这K次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这K次训练误差和验证误差分别求平均。

过拟合和欠拟合


接下来,我们将探究模型训练中经常出现的两类典型问题:

  • 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);
  • 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。

模型复杂度


模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征和对应的标量标签组成的训练数据集,多项式函数拟合的目标是找一个阶多项式函数

image.png

来近似 。在上式中,是模型的权重参数,是偏差参数。与线性回归相同,多项式函数拟合也使用平方损失函数。特别地,一阶多项式函数拟合又叫线性函数拟合。

给定训练数据集,模型复杂度和误差之间的关系:

eeb51972eea69fd9729d25db8e9724e9.png

训练数据集大小


影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。

多项式函数拟合实验


%matplotlib inline
import torch
import numpy as np
import sys
sys.path.append("/home/input")
import d2lzh1981 as d2l

初始化模型参数


n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5
features = torch.randn((n_train + n_test, 1))
poly_features = torch.cat((features, torch.pow(features, 2), torch.pow(features, 3)), 1) #1表示按列拼接
labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1]
          + true_w[2] * poly_features[:, 2] + true_b)
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
features[:2], poly_features[:2], labels[:2]

(tensor([[0.7633], [0.1742]]), tensor([[0.7633, 0.5826, 0.4447],[0.1742, 0.0303, 0.0053]]), tensor([6.4205, 5.1422]))

定义、训练和测试模型


def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,
             legend=None, figsize=(3.5, 2.5)):
    # d2l.set_figsize(figsize)
    d2l.plt.xlabel(x_label)
    d2l.plt.ylabel(y_label)
    d2l.plt.semilogy(x_vals, y_vals)
    if x2_vals and y2_vals:
        d2l.plt.semilogy(x2_vals, y2_vals, linestyle=':')
        d2l.plt.legend(legend)
num_epochs, loss = 100, torch.nn.MSELoss()
def fit_and_plot(train_features, test_features, train_labels, test_labels):
    # 初始化网络模型
    net = torch.nn.Linear(train_features.shape[-1], 1)
    # 通过Linear文档可知,pytorch已经将参数初始化了,所以我们这里就不手动初始化了
    # 设置批量大小
    batch_size = min(10, train_labels.shape[0])    
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)      # 设置数据集
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True) # 设置获取数据方式
    optimizer = torch.optim.SGD(net.parameters(), lr=0.01)                      # 设置优化函数,使用的是随机梯度下降优化
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:                                                 # 取一个批量的数据
            l = loss(net(X), y.view(-1, 1))                                     # 输入到网络中计算输出,并和标签比较求得损失函数
            optimizer.zero_grad()                                               # 梯度清零,防止梯度累加干扰优化
            l.backward()                                                        # 求梯度
            optimizer.step()                                                    # 迭代优化函数,进行参数优化
        train_labels = train_labels.view(-1, 1)
        test_labels = test_labels.view(-1, 1)
        train_ls.append(loss(net(train_features), train_labels).item())         # 将训练损失保存到train_ls中
        test_ls.append(loss(net(test_features), test_labels).item())            # 将测试损失保存到test_ls中
    print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1])    
    semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
             range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('weight:', net.weight.data,
          '\nbias:', net.bias.data)

线性函数拟合(欠拟合)


fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_

b1ff5c47ebd102a9d13eb6e665bf8e1e.png

训练样本不足(过拟合)


fit_and_plot(poly_features[0:2, :], poly_features[n_train:, :], label

c98127db64217baa4e92062938b470cd.png

权重衰减


方法


权重衰减等价于  范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。

L2 范数正则化(regularization)


范数正则化在模型原损失函数基础上添加范数惩罚项,从而得到训练所需要最小化的函数。范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以线性回归中的线性回归损失函数为例

d9a53e60e2e263bce57f816bfaf4c3b9.png

image.png

高维线性回归实验从零开始的实现


image.png

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
sys.path.append("/home/input")
import d2lzh1981 as d2l

初始化模型参数


n_train, n_test, num_inputs = 20, 100, 200
true_w, true_b = torch.ones(num_inputs, 1) * 0.01, 0.05
features = torch.randn((n_train + n_test, num_inputs))
labels = torch.matmul(features, true_w) + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
train_features, test_features = features[:n_train, :], features[n_train:, :]
train_labels, test_labels = labels[:n_train], labels[n_train:]
# 定义参数初始化函数,初始化模型参数并且附上梯度
def init_params():
    w = torch.randn((num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]

定义L2范数惩罚项


def l2_penalty(w):
    return (w**2).sum() / 2

定义训练和测试


batch_size, num_epochs, lr = 1, 100, 0.003
net, loss = d2l.linreg, d2l.squared_loss
dataset = torch.utils.data.TensorDataset(train_features, train_labels)
train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
def fit_and_plot(lambd):
    w, b = init_params()
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            # 添加了L2范数惩罚项
            l = loss(net(X, w, b), y) + lambd * l2_penalty(w)
            l = l.sum()
            if w.grad is not None:
                w.grad.data.zero_()
                b.grad.data.zero_()
            l.backward()
            d2l.sgd([w, b], lr, batch_size)
        train_ls.append(loss(net(train_features, w, b), train_labels).mean().item())
        test_ls.append(loss(net(test_features, w, b), test_labels).mean().item())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('L2 norm of w:', w.norm().item())

观察过拟合


fit_and_plot(lambd=0)

12fb94b5fca6520e85a4e90a13e25486.png

使用权重衰减


fit_and_plot(lambd=3)

04be45858041e0cfcb902a18dc52136f.png

简洁实现


def fit_and_plot_pytorch(wd):
    # 对权重参数衰减。权重名称一般是以weight结尾
    net = nn.Linear(num_inputs, 1)
    nn.init.normal_(net.weight, mean=0, std=1)
    nn.init.normal_(net.bias, mean=0, std=1)
    optimizer_w = torch.optim.SGD(params=[net.weight], lr=lr, weight_decay=wd) # 对权重参数衰减
    optimizer_b = torch.optim.SGD(params=[net.bias], lr=lr)  # 不对偏差参数衰减
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X), y).mean()
            optimizer_w.zero_grad()
            optimizer_b.zero_grad()
            l.backward()
            # 对两个optimizer实例分别调用step函数,从而分别更新权重和偏差
            optimizer_w.step()
            optimizer_b.step()
        train_ls.append(loss(net(train_features), train_labels).mean().item())
        test_ls.append(loss(net(test_features), test_labels).mean().item())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('L2 norm of w:', net.weight.data.norm().item())
fit_and_plot_pytorch(0)
fit_and_plot_pytorch(3)

4ececb3310fcec25fe6eb3e767aeeff3.png

568787b5e5a9b03cc48be22c10c7c0db.png

丢弃法


image.png

丢弃法不改变其输入的期望值。让我们对之前多层感知机的神经网络中的隐藏层使用丢弃法,一种可能的结果如图所示,其中被清零。这时输出值的计算不再依赖,在反向传播时,与这两个隐藏单元相关的权重的梯度均为0。由于在训练中隐藏层神经元的丢弃是随机的,即都有可能被清零,输出层的计算无法过度依赖中的任一个,从而在训练模型时起到正则化的作用,并可以用来应对过拟合。

50f12b27152880b66b596b24f97fd10e.png

简洁实现


net = nn.Sequential(
        d2l.FlattenLayer(),
        nn.Linear(num_inputs, num_hiddens1),
        nn.ReLU(),
        nn.Dropout(drop_prob1),
        nn.Linear(num_hiddens1, num_hiddens2), 
        nn.ReLU(),
        nn.Dropout(drop_prob2),
        nn.Linear(num_hiddens2, 10)
        )
for param in net.parameters():
    nn.init.normal_(param, mean=0, std=0.01)
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)

ba926197b1be183e5568ad53a81d3883.png

参考文献


[1]《动手深度学习》李沐

[2]伯禹教育课程

相关文章
|
机器学习/深度学习 人工智能 算法
【Pytorch神经网络理论篇】 16 过拟合问题的优化技巧(三):批量归一化
Switchable Normalization算法,它可以将多种批量归一化算法融合并赋予可以学习的权重,在使用时,通过模型训练的方法来自动学习。
284 0
|
机器学习/深度学习 人工智能 PyTorch
【Pytorch神经网络理论篇】 15 过拟合问题的优化技巧(二):Dropout()方法
异常数据的特点:与主流样本中的规律不同,在一个样本中出现的概率要比主流数据出现的概率低很多。在每次训练中,忽略模型中一些节点,将小概率的异常数据获得学习的机会变得更低。这样,异常数据对模型的影响就会更小。
260 0
|
机器学习/深度学习 人工智能 数据可视化
【Pytorch神经网络理论篇】 14 过拟合问题的优化技巧(一):基本概念+正则化+数据增大
【Pytorch神经网络理论篇】 14 过拟合问题的优化技巧(一):基本概念+正则化+数据增大
518 0
|
3月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
435 2
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
51 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
3月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
89 7
利用 PyTorch Lightning 搭建一个文本分类模型
|
3月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
171 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
4月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
254 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
4月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
60 3
PyTorch 模型调试与故障排除指南
|
3月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法