【Kelm回归预测】基于粒子群算法优化核极限学习机实现数据回归预测附matlab代码

简介: 【Kelm回归预测】基于粒子群算法优化核极限学习机实现数据回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

风电功率预测能为电网规划和运行提供重要依据,传统预测方法多为点预测,其结果一般有不同程度的误差,区间预测方法能有效描述风电输出功率的不确定性因而逐步受到重视。针对短期风电功率概率区间预测问题,提出一种基于粒子群优化的核极限学习机(PSO-KELM)模型,用于风电功率区间预测。通过核极限学习机(KELM)建立预测模型,采用粒子群算法对KELM的输出权值进行优化,寻找最优预测区间上下限,充分利用了KELM学习速度快、泛化能力强的优点,实现了对风电功率的快速区间预测。通过与PSO-ELM模型对比分析风电场在不同置信水平下的概率预测结果,发现PSO-KELM模型的预测精度更高,速度更快,能够为风电功率区间预测及风电并网安全稳定运行提供决策支持。

⛄ 部分代码

function [g,gbest,Convergence_curve]=PSO(N,T,lb,ub,dim,fobj)

%% 定义粒子群算法参数

%% 随机初始化种群

D=dim;                   %粒子维数

c1=1.5;                 %学习因子1

c2=1.5;                 %学习因子2

w=0.8;                  %惯性权重


Xmax=ub;                %位置最大值

Xmin=lb;               %位置最小值

Vmax=ub;                %速度最大值

Vmin=lb;               %速度最小值

%%

%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%


x=rand(N,D).*(Xmax-Xmin)+Xmin;

v=rand(N,D).*(Vmax-Vmin)+Vmin;

%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%

p=x;

pbest=ones(N,1);

for i=1:N

   pbest(i)=fobj(x(i,:));

end

%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%

g=ones(1,D);

gbest=inf;

for i=1:N

   if(pbest(i)<gbest)

       g=p(i,:);

       gbest=pbest(i);

   end

end

%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%

for i=1:T

      i

   for j=1:N

       %%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%

       if (fobj(x(j,:))) <pbest(j)

           p(j,:)=x(j,:);

           pbest(j)=fobj(x(j,:));

       end

       %%%%%%%%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%%%%

       if(pbest(j)<gbest)

           g=p(j,:);

           gbest=pbest(j);

       end

       %%%%%%%%%%%%%%%%%跟新位置和速度值%%%%%%%%%%%%%%%%%%%%%

       v(j,:)=w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...

           +c2*rand*(g-x(j,:));

       x(j,:)=x(j,:)+v(j,:);

       %%%%%%%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%%%%%%%%

       if length(Vmax)==1

           for ii=1:D

               if (v(j,ii)>Vmax)  |  (v(j,ii)< Vmin)

                   v(j,ii)=rand * (Vmax-Vmin)+Vmin;

               end

               if (x(j,ii)>Xmax)  |  (x(j,ii)< Xmin)

                   x(j,ii)=rand * (Xmax-Xmin)+Xmin;

               end

           end          

       else

           for ii=1:D

               if (v(j,ii)>Vmax(ii))  |  (v(j,ii)< Vmin(ii))

                   v(j,ii)=rand * (Vmax(ii)-Vmin(ii))+Vmin(ii);

               end

               if (x(j,ii)>Xmax(ii))  |  (x(j,ii)< Xmin(ii))

                   x(j,ii)=rand * (Xmax(ii)-Xmin(ii))+Xmin(ii);

               end

           end

       end

           

   end

   %%%%%%%%%%%%%%%%%%%%记录历代全局最优值%%%%%%%%%%%%%%%%%%%%%

  Convergence_curve(i)=gbest;%记录训练集的适应度值


end

⛄ 运行结果

⛄ 参考文献

[1]杨锡运, 关文渊, 刘玉奇,等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(S1):146-153.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
8天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
87 14
|
8天前
|
存储 算法 安全
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)
|
8天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
|
8天前
|
算法 数据可视化 异构计算
【车辆路径问题VRPTW】基于北极海鹦优化(APO)算法求解带时间窗的车辆路径问题VRPTW研究(Matlab代码实现)
【车辆路径问题VRPTW】基于北极海鹦优化(APO)算法求解带时间窗的车辆路径问题VRPTW研究(Matlab代码实现)
|
9天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
9天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
|
9天前
|
机器学习/深度学习 传感器 边缘计算
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
|
8天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
9天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)

热门文章

最新文章