m基于matlab的协作mimo分布式空时编码技术的仿真

简介: m基于matlab的协作mimo分布式空时编码技术的仿真

1.算法描述

    基于matlab的协作mimo分布式空时编码技术的仿真,包括规则LDPC级联D-STBC,ML,ZF,DFE均衡,Fincke-Pohst-MAP算法检测。将规则LDPC加入这个协作MIMO的D-STBC里,即是将LDPC码与D-STBC级联,发送端用LDPC编码发送到协作节点,然后协作节点用D-STBC码形式转发到发送端。做出 ML、ZF-OSIC和 ,RLS-MIMO-DFE三种检测算法误码率的性能比较(注意:发送端到中继协作节点过程中,中继协作节点对源信号的处理三种协议:放大转发,解码转发和编码协作,所以这分别三种协议下的三种检测算法要分别做),以及LDPC与D-STBC结合的协作MIMO系统与没有LDPC码的协作MIMO的D-STBC系统在ML检测算法下性能比较(只做“编码协作协议”下)。比较LDPC级联D-STBC的协作MIMO系统下,接收端检测分别采用ML算法和Fincke-Pohst MAP。

   多中继放大转发(AF, Amplify and Forward)和译码转发(DF, Decode and Forward)协议的主要缺点是中继采用正交子信道传输降低了频谱利用率。这引发了人们对分布式空时编码(DSTC, Distributed Space Time Coding)的研究。 目前多中继AF协议的中继选择和功率分配算法研究较多,但是通常只考虑不同中继使用正交信道传输的情况,而结合DSTC进行中继选择和功率分配算法的研究还不多。本文在研究多中继AF协议的基础上,针对DSTC系统的中继选择算法和功率分配算法开展研究。 首先,介绍分集技术、协作通信和空时编码相关知识,在此基础上引入DSTC,重点分析基于AF的DSTC,并给出对应的准正交空时编码(QOSTC, Quasi-Orthogonal Space Time Code)。 然后,针对DSTC系统中最大似然(ML, Maximum Likelihood)检测计算复杂度高的问题,我们利用线性分散码(LD, Linear Dispersion)的线性性质,将迫零(ZF, Zero Forcing)检测算法用于基于LD的DSTC。该ZF检测算法在基本保持误比特率(BER, Bit Error Rate)性能的同时,降低了检测的计算复杂度。 接着,研究DSTC系统的中继选择算法,推导DSTC系统中信宿的接收信噪比(SNR, Signal to Noise Ratio)表达式,研究基于SNR准则的中继选择算法,为了降低算法的计算复杂度,使用一种次优中继选择算法,减少中继选择搜索次数。最后将该算法与已有算法作仿真比较。 最后,研究DSTC系统的功率分配算法,研究一种最大化信宿接收SNR的功率分配算法,该算法利用调和平均准则对多个中继进行功率分配,将信源和中继的功率分配问题转化为对信源功率的一维搜索问题。该算法能够根据信道条件调整信源和中继的发射功率。最后仿真对比中继选择和功率分配的两种结合方案:中继选择之后功率分配和中继选择同时功率分配,从仿真结果可以看出两种结合方案的BER性能接近,但是中继选择同时功率分配的方案具有更高的计算复杂度。

2.仿真效果预览
matlab2013b仿真结果如下:

1.png
2.png
3.png
4.png

3.MATLAB部分代码预览

Nt            = 2;
Nr            = 2;
Frame_Length  = 512;     
Error_Num     = 1000000;%统计误码的个数
EbNo          = 0.5:0.5:4.5; 
P             = 2;
QMod          = modem.pskmod('M',P,'PhaseOffset',0);
QDemod        = modem.pskdemod(QMod);
q             = modulate(QMod,0:1);
Q             = q;
 
for i = 2:Nt
    Q = [q(reshape(repmat(1:2, length(Q),1),1,2*length(Q)));repmat(Q,1,2)];
end
 
%LDPC参数
N        = Frame_Length;%设置奇偶校验矩阵大小     
M        = N/2;
max_iter = 99;                 %最大迭代次数
 
load H2;
load G2;
 
BERs = zeros(1, length(EbNo));
 
for kk = 1:length(EbNo)
    kk
    totalNumErr = 0;
    count       = 0;
    SNR         = 10^(EbNo(kk)/10);
    N0          = 2*10^(-EbNo(kk)/10);
    sigma       = 1/(sqrt(SNR)/2);   
    
    ii          = 0;
    Dsd         = 36;          %db数
    Dsr         = 36;
    Drd         = 36;
    Qsd         = sqrt(10^(Dsd/10));
    Qsr         = sqrt(10^(Dsr/10));
    Qrd         = sqrt(10^(Drd/10));     
    
    LL          = 2;
 
    while (totalNumErr < Error_Num)
        kk
        totalNumErr
 
        %产生数据
        data       = round(rand(1,N-M)); 
        %LDPC编码
        u          = mod(data*G,2);
        %BPSK
        tx         = 2*u - 1;        
        
        %编码协作协议
        Trans_N1    = tx(1:N-M);        %N1序列
        Trans_N2    = tx(N-M+1:2*(N-M));%N2序列
        %ii=1的时候,发送自身的码字,而ii=2的时候发送协作的码字,从而达到时隙的效果
        ii          = ii + 1;        
 
        %将N1发送给目的地
        %将N1发送给目的地
        %作为发送信源
        %进行AF中继
        %信道增益
        Hsd=Qsd*(randn);
        Hsr=Qsr*(randn);
        Hrd=Qrd*(randn);
        %协作节点的放大增益
        B=sqrt(1/(abs(Qsr)^2*1));
        %===============================
        %最大合并比加权因子计算(第i个支路的可变增益加权系数为该分集之路的信号幅度与噪声功率之比)
        %计算增益
        A0=conj(Hsd)/(1/(sqrt(LL)*EbNo(kk)));
        A1=B*conj(Hsr)*conj(Hrd)/((B^2*(abs(Hsr))^2+1)*(1/(sqrt(LL)*EbNo(kk))));           
        %接收
        MIMO_Rx =  Trans_N1/max(abs(Trans_N1))+ 1/(sqrt(SNR))*randn(size(Trans_N1));
        Ysr      = Hsr*MIMO_Rx;
        Yrd      = Hrd*Ysr*B;
        Ysd      = Hsd*MIMO_Rx;
        Y        = A0*Ysd+A1*Yrd; 
        %接收到的二进制信号
        MIMO_Rx1 = Y;    
        Rec_data1= sign(MIMO_Rx1); 
           
        %将N1发送给用户2
        %将N1发送给用户2              
        %接收
        MIMO_Rx2   = Trans_N1/max(max(Trans_N1))+ 1/(sqrt(SNR))*randn(size(Trans_N1));
        Ysr        = Hsr*MIMO_Rx2;
        Yrd        = Hrd*Ysr*B;
        Ysd        = Hsd*MIMO_Rx2;
        Y          = A0*Ysd+A1*Yrd;       
        %接收到的二进制信号
        MIMO_Rx12  = Y;   
        Rec_data12 = sign(MIMO_Rx2);                     
 
        %第二时隙,用户2向目的端发送用户1的第二帧信号,即用户2重新编码得到的关于U1分组的N2比特校验码字对应的调制信号
        %在USER2中,将接收到的N1序列重新进行编码,然后将其中的序列N2发送给目的地
        rec_datas              = -1*(Rec_data12-1)/2;
        Ldpc_trans_data_user2  = mod(data*G,2); 
        Trans_N2_user2         = Ldpc_trans_data_user2(N-M+1:2*(N-M));%N2序列
        Trans_N2_user3         = 2*Trans_N2_user2-1;
           
        %---------------------协作MIMO----------------------------------
        Hsd=Qsd*(randn);
        Hsr=Qsr*(randn);
        Hrd=Qrd*(randn);
        %协作节点的放大增益
        B=sqrt(1/(abs(Qsr)^2*1));
        %===============================
        %最大合并比加权因子计算(第i个支路的可变增益加权系数为该分集之路的信号幅度与噪声功率之比)
        %计算增益
        A0=conj(Hsd)/(1/(sqrt(LL)*EbNo(kk)));
        A1=B*conj(Hsr)*conj(Hrd)/((B^2*(abs(Hsr))^2+1)*(1/(sqrt(LL)*EbNo(kk))));           
        %接收
        MIMO_Rx =  Trans_N2/max(abs(Trans_N2))+ 1/(sqrt(SNR))*randn(size(Trans_N2));
        Ysr      = Hsr*MIMO_Rx;
        Yrd      = Hrd*Ysr*B;
        Ysd      = Hsd*MIMO_Rx;
        Y        = A0*Ysd+A1*Yrd; 
        %接收到的二进制信号
        MIMO_Rx2 = Y;
        Rec_data2= sign(MIMO_Rx2);   
        
        
        YY1 = [MIMO_Rx12,MIMO_Rx2]';               
        YY2 = [Rec_data12,Rec_data2]';        
 
        Tx          = reshape(YY2,Nt, Frame_Length/Nt);    
        RayleighMat = (rand(Nr, Nt) + j*rand(Nr, Nt));   
        rr          = size(RayleighMat*Tx,1);
        cc          = size(RayleighMat*Tx,2);
        r           = awgn(RayleighMat*Tx, inf);         
        Hs          = RayleighMat;                                    
        HQ          = Hs*Q;              
 
        ahat        = zeros(Nt,Frame_Length/Nt);
        
        yy2 = func_FP_MAP(r',(2*Nt)*(2/(SNR)),RayleighMat,[-1 1]); 
 
        tmps        = demodulate(QDemod,yy2);
        Rec_data    = reshape(tmps,1,Frame_Length);   
        
        %LDPC译码
        Rec_data(find(Rec_data==0)) =-1;
        Rec_data                    =-1*Rec_data;
        z_hat = func_Dec(Rec_data,N0,H,max_iter);
        x_hat = z_hat(size(G,2)+1-size(G,1):size(G,2));          
 
        %===========================================================================
        count       = count + 1;
        totalNumErr = totalNumErr + biterr(x_hat', data);
    end
    
    BERs(kk) = totalNumErr/(count*Frame_Length);
    
end
 
figure;
semilogy(EbNo,BERs,'r-o');
grid on;
01_050_m
相关文章
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
2天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
2天前
|
数据安全/隐私保护
基于PID控制器的双容控制系统matlab仿真
本课题基于MATLAB2022a实现双容水箱PID控制系统的仿真,通过PID控制器调整泵流量以维持下游水箱液位稳定。系统输出包括水位和流量两个指标,仿真结果无水印。核心程序绘制了水位和流量随时间变化的图形,并设置了硬约束上限和稳态线。双容水箱系统使用一阶线性微分方程组建模,PID控制器结合比例、积分、微分作用,动态调整泵的输出流量,使液位接近设定值。
|
3天前
|
算法 机器人 数据安全/隐私保护
四自由度SCARA机器人的运动学和动力学matlab建模与仿真
本课题深入研究SCARA机器人系统,提出其动力学与运动学模型,并基于MATLAB Robotics Toolbox建立四自由度SCARA机器人仿真对象。通过理论结合仿真实验,实现了运动学正解、逆解及轨迹规划等功能,完成系统实验和算法验证。SCARA机器人以其平面关节结构实现快速定位与装配,在自动生产线中广泛应用,尤其在电子和汽车行业表现优异。使用D-H参数法进行结构建模,推导末端执行器的位姿,建立了机器人的运动学方程。
|
3天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
1天前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。
|
4天前
|
算法 数据处理 数据安全/隐私保护
分别通过LS和RML进行模型参数辨识matlab仿真
本程序通过最小二乘法(LS)和递归最大似然估计(RML)进行模型参数辨识,并在MATLAB2022A中仿真。仿真输出包括参数辨识误差及收敛值。程序展示了两种方法的参数估计值及其误差收敛情况,适用于控制系统设计与分析。最小二乘法适合离线批量处理,而RML则适用于实时在线处理。核心代码实现了LS辨识,并绘制了参数估计值和误差变化图。
|
16天前
|
NoSQL Java 中间件
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
本文介绍了从单机锁到分布式锁的演变,重点探讨了使用Redis实现分布式锁的方法。分布式锁用于控制分布式系统中多个实例对共享资源的同步访问,需满足互斥性、可重入性、锁超时防死锁和锁释放正确防误删等特性。文章通过具体示例展示了如何利用Redis的`setnx`命令实现加锁,并分析了简化版分布式锁存在的问题,如锁超时和误删。为了解决这些问题,文中提出了设置锁过期时间和在解锁前验证持有锁的线程身份的优化方案。最后指出,尽管当前设计已解决部分问题,但仍存在进一步优化的空间,将在后续章节继续探讨。
454 131
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
|
19天前
|
NoSQL Java Redis
Springboot使用Redis实现分布式锁
通过这些步骤和示例,您可以系统地了解如何在Spring Boot中使用Redis实现分布式锁,并在实际项目中应用。希望这些内容对您的学习和工作有所帮助。
146 83
|
5月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?

热门文章

最新文章