m基于matlab的协作mimo分布式空时编码技术的仿真

简介: m基于matlab的协作mimo分布式空时编码技术的仿真

1.算法描述

    基于matlab的协作mimo分布式空时编码技术的仿真,包括规则LDPC级联D-STBC,ML,ZF,DFE均衡,Fincke-Pohst-MAP算法检测。将规则LDPC加入这个协作MIMO的D-STBC里,即是将LDPC码与D-STBC级联,发送端用LDPC编码发送到协作节点,然后协作节点用D-STBC码形式转发到发送端。做出 ML、ZF-OSIC和 ,RLS-MIMO-DFE三种检测算法误码率的性能比较(注意:发送端到中继协作节点过程中,中继协作节点对源信号的处理三种协议:放大转发,解码转发和编码协作,所以这分别三种协议下的三种检测算法要分别做),以及LDPC与D-STBC结合的协作MIMO系统与没有LDPC码的协作MIMO的D-STBC系统在ML检测算法下性能比较(只做“编码协作协议”下)。比较LDPC级联D-STBC的协作MIMO系统下,接收端检测分别采用ML算法和Fincke-Pohst MAP。

   多中继放大转发(AF, Amplify and Forward)和译码转发(DF, Decode and Forward)协议的主要缺点是中继采用正交子信道传输降低了频谱利用率。这引发了人们对分布式空时编码(DSTC, Distributed Space Time Coding)的研究。 目前多中继AF协议的中继选择和功率分配算法研究较多,但是通常只考虑不同中继使用正交信道传输的情况,而结合DSTC进行中继选择和功率分配算法的研究还不多。本文在研究多中继AF协议的基础上,针对DSTC系统的中继选择算法和功率分配算法开展研究。 首先,介绍分集技术、协作通信和空时编码相关知识,在此基础上引入DSTC,重点分析基于AF的DSTC,并给出对应的准正交空时编码(QOSTC, Quasi-Orthogonal Space Time Code)。 然后,针对DSTC系统中最大似然(ML, Maximum Likelihood)检测计算复杂度高的问题,我们利用线性分散码(LD, Linear Dispersion)的线性性质,将迫零(ZF, Zero Forcing)检测算法用于基于LD的DSTC。该ZF检测算法在基本保持误比特率(BER, Bit Error Rate)性能的同时,降低了检测的计算复杂度。 接着,研究DSTC系统的中继选择算法,推导DSTC系统中信宿的接收信噪比(SNR, Signal to Noise Ratio)表达式,研究基于SNR准则的中继选择算法,为了降低算法的计算复杂度,使用一种次优中继选择算法,减少中继选择搜索次数。最后将该算法与已有算法作仿真比较。 最后,研究DSTC系统的功率分配算法,研究一种最大化信宿接收SNR的功率分配算法,该算法利用调和平均准则对多个中继进行功率分配,将信源和中继的功率分配问题转化为对信源功率的一维搜索问题。该算法能够根据信道条件调整信源和中继的发射功率。最后仿真对比中继选择和功率分配的两种结合方案:中继选择之后功率分配和中继选择同时功率分配,从仿真结果可以看出两种结合方案的BER性能接近,但是中继选择同时功率分配的方案具有更高的计算复杂度。

2.仿真效果预览
matlab2013b仿真结果如下:

1.png
2.png
3.png
4.png

3.MATLAB部分代码预览

Nt            = 2;
Nr            = 2;
Frame_Length  = 512;     
Error_Num     = 1000000;%统计误码的个数
EbNo          = 0.5:0.5:4.5; 
P             = 2;
QMod          = modem.pskmod('M',P,'PhaseOffset',0);
QDemod        = modem.pskdemod(QMod);
q             = modulate(QMod,0:1);
Q             = q;
 
for i = 2:Nt
    Q = [q(reshape(repmat(1:2, length(Q),1),1,2*length(Q)));repmat(Q,1,2)];
end
 
%LDPC参数
N        = Frame_Length;%设置奇偶校验矩阵大小     
M        = N/2;
max_iter = 99;                 %最大迭代次数
 
load H2;
load G2;
 
BERs = zeros(1, length(EbNo));
 
for kk = 1:length(EbNo)
    kk
    totalNumErr = 0;
    count       = 0;
    SNR         = 10^(EbNo(kk)/10);
    N0          = 2*10^(-EbNo(kk)/10);
    sigma       = 1/(sqrt(SNR)/2);   
    
    ii          = 0;
    Dsd         = 36;          %db数
    Dsr         = 36;
    Drd         = 36;
    Qsd         = sqrt(10^(Dsd/10));
    Qsr         = sqrt(10^(Dsr/10));
    Qrd         = sqrt(10^(Drd/10));     
    
    LL          = 2;
 
    while (totalNumErr < Error_Num)
        kk
        totalNumErr
 
        %产生数据
        data       = round(rand(1,N-M)); 
        %LDPC编码
        u          = mod(data*G,2);
        %BPSK
        tx         = 2*u - 1;        
        
        %编码协作协议
        Trans_N1    = tx(1:N-M);        %N1序列
        Trans_N2    = tx(N-M+1:2*(N-M));%N2序列
        %ii=1的时候,发送自身的码字,而ii=2的时候发送协作的码字,从而达到时隙的效果
        ii          = ii + 1;        
 
        %将N1发送给目的地
        %将N1发送给目的地
        %作为发送信源
        %进行AF中继
        %信道增益
        Hsd=Qsd*(randn);
        Hsr=Qsr*(randn);
        Hrd=Qrd*(randn);
        %协作节点的放大增益
        B=sqrt(1/(abs(Qsr)^2*1));
        %===============================
        %最大合并比加权因子计算(第i个支路的可变增益加权系数为该分集之路的信号幅度与噪声功率之比)
        %计算增益
        A0=conj(Hsd)/(1/(sqrt(LL)*EbNo(kk)));
        A1=B*conj(Hsr)*conj(Hrd)/((B^2*(abs(Hsr))^2+1)*(1/(sqrt(LL)*EbNo(kk))));           
        %接收
        MIMO_Rx =  Trans_N1/max(abs(Trans_N1))+ 1/(sqrt(SNR))*randn(size(Trans_N1));
        Ysr      = Hsr*MIMO_Rx;
        Yrd      = Hrd*Ysr*B;
        Ysd      = Hsd*MIMO_Rx;
        Y        = A0*Ysd+A1*Yrd; 
        %接收到的二进制信号
        MIMO_Rx1 = Y;    
        Rec_data1= sign(MIMO_Rx1); 
           
        %将N1发送给用户2
        %将N1发送给用户2              
        %接收
        MIMO_Rx2   = Trans_N1/max(max(Trans_N1))+ 1/(sqrt(SNR))*randn(size(Trans_N1));
        Ysr        = Hsr*MIMO_Rx2;
        Yrd        = Hrd*Ysr*B;
        Ysd        = Hsd*MIMO_Rx2;
        Y          = A0*Ysd+A1*Yrd;       
        %接收到的二进制信号
        MIMO_Rx12  = Y;   
        Rec_data12 = sign(MIMO_Rx2);                     
 
        %第二时隙,用户2向目的端发送用户1的第二帧信号,即用户2重新编码得到的关于U1分组的N2比特校验码字对应的调制信号
        %在USER2中,将接收到的N1序列重新进行编码,然后将其中的序列N2发送给目的地
        rec_datas              = -1*(Rec_data12-1)/2;
        Ldpc_trans_data_user2  = mod(data*G,2); 
        Trans_N2_user2         = Ldpc_trans_data_user2(N-M+1:2*(N-M));%N2序列
        Trans_N2_user3         = 2*Trans_N2_user2-1;
           
        %---------------------协作MIMO----------------------------------
        Hsd=Qsd*(randn);
        Hsr=Qsr*(randn);
        Hrd=Qrd*(randn);
        %协作节点的放大增益
        B=sqrt(1/(abs(Qsr)^2*1));
        %===============================
        %最大合并比加权因子计算(第i个支路的可变增益加权系数为该分集之路的信号幅度与噪声功率之比)
        %计算增益
        A0=conj(Hsd)/(1/(sqrt(LL)*EbNo(kk)));
        A1=B*conj(Hsr)*conj(Hrd)/((B^2*(abs(Hsr))^2+1)*(1/(sqrt(LL)*EbNo(kk))));           
        %接收
        MIMO_Rx =  Trans_N2/max(abs(Trans_N2))+ 1/(sqrt(SNR))*randn(size(Trans_N2));
        Ysr      = Hsr*MIMO_Rx;
        Yrd      = Hrd*Ysr*B;
        Ysd      = Hsd*MIMO_Rx;
        Y        = A0*Ysd+A1*Yrd; 
        %接收到的二进制信号
        MIMO_Rx2 = Y;
        Rec_data2= sign(MIMO_Rx2);   
        
        
        YY1 = [MIMO_Rx12,MIMO_Rx2]';               
        YY2 = [Rec_data12,Rec_data2]';        
 
        Tx          = reshape(YY2,Nt, Frame_Length/Nt);    
        RayleighMat = (rand(Nr, Nt) + j*rand(Nr, Nt));   
        rr          = size(RayleighMat*Tx,1);
        cc          = size(RayleighMat*Tx,2);
        r           = awgn(RayleighMat*Tx, inf);         
        Hs          = RayleighMat;                                    
        HQ          = Hs*Q;              
 
        ahat        = zeros(Nt,Frame_Length/Nt);
        
        yy2 = func_FP_MAP(r',(2*Nt)*(2/(SNR)),RayleighMat,[-1 1]); 
 
        tmps        = demodulate(QDemod,yy2);
        Rec_data    = reshape(tmps,1,Frame_Length);   
        
        %LDPC译码
        Rec_data(find(Rec_data==0)) =-1;
        Rec_data                    =-1*Rec_data;
        z_hat = func_Dec(Rec_data,N0,H,max_iter);
        x_hat = z_hat(size(G,2)+1-size(G,1):size(G,2));          
 
        %===========================================================================
        count       = count + 1;
        totalNumErr = totalNumErr + biterr(x_hat', data);
    end
    
    BERs(kk) = totalNumErr/(count*Frame_Length);
    
end
 
figure;
semilogy(EbNo,BERs,'r-o');
grid on;
01_050_m
相关文章
|
3天前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
146 13
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
6天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
2天前
|
存储 缓存 负载均衡
从零到一:分布式缓存技术初探
分布式缓存通过将数据存储在多个节点上,利用负载均衡算法提高访问速度、降低数据库负载并增强系统可用性。常见产品有Redis、Memcached等。其优势包括性能扩展、高可用性、负载均衡和容错性,适用于页面缓存、应用对象缓存、状态缓存、并行处理、事件处理及极限事务处理等多种场景。
13 1
|
5天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
27 2
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
15天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
225 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码