运筹优化学习23:单因素方差分析理论及Matlab代码实现(上)

简介: 运筹优化学习23:单因素方差分析理论及Matlab代码实现

今天有兴趣学习了一下单因素方差分析,在此做一个总结,希望对后来者有用

文章参考了以下博客文章:

举例分析方差分析ANOVA

1 理论基础

单因素方差分析是研究影响某个指标的单个因素在不同水平下的相关性的重要方法,下面是几个重要概念:

1.1 基础概念

1.1.1 示例

如我们要研究饮料颜色与饮料销售量的关系,那么:

  • 饮料销售量就是我们要观测的试验指标
  • 饮料颜色表示的是影响饮料销售量的因素
  • 因素的具体体现为多种水平,即橘黄色、粉色、绿色和无色透明
  • 每个水平要要进行多组观测,如在不同的超市进行


aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy8xMTA5ODI1OC04ZDA0OTJiNmY2Mzk0YzY1LnBuZw.png

从表中看到,20个数据各不相同,其原因可能有两个方面:


一是销售地点不同的影响。即使是相同颜色的饮料,在不同超市的销售量也是不同的。但是,由于这五个超市地理位置相似、经营规模相仿,因此,可以把不同地点产品销售量的差异看成是随机因素的影响。

二是饮料颜色不同的影响。即使在同一个超市里,不同颜色的饮料的销售量也是不同的。哪怕它们的营养成分、味道、价格、包装等方面的因素都相同,但销售量也不相同。这种不同,有可能是由于抽样的随机性造成的,也有可能是由于人们对不同颜色的偏爱造成的。

   于是,上述问题就归结为检验饮料颜色对销售量是否有影响的问题。我们可以令μ1、μ2、μ3、μ4分别为四种颜色饮料的平均销售量,检验它们是否相等。如果检验结果显示μ1、μ2、μ3、μ4不相等,则意味着不同颜色的饮料来自于不同的总体,表明饮料颜色对销售量有影响;反之,如果检验结果显示μ1、μ2、μ3、μ4之间不存在显著性差异,则意味着不同颜色的饮料来自于相同的总体,可认为饮料颜色对销售量没有影响。

1.1.2 分析

从方差分析的目的来看,是要检验各个水平的均值μ1、μ2、…、μm是否相等(m为水平个数),而实现这个目的的手段是通过方差的比较(即考察各观察数据的差异)。在变量的观察值之间存在着差异。


差异的产生来自于两个方面。一个方面是由因素中的不同水平造成的,称之为系统性差异(或系统性误差)。如:饮料的不同颜色带来不同的销售量。另一个方面是由于抽选样本的随机性而产生的差异,称之为随机性差异(或随机性误差)。如:相同颜色的饮料在不同的商场销售量也不同。


两个方面产生的差异可以用两个方差来计量。

   一个叫组间方差,即水平之间的方差,是衡量不同总体下各样本之间差异的方差。在组间方差里,既包括系统性误差,也包括随机性误差。如:在例1中,不同颜色的饮料在不同地点(超市)产品销售量之间的差异既有系统性误差(即由于人们对不同颜色的偏爱造成的差异),也有随机性误差(即由于抽样的随机性造成的差异)。不同颜色的饮料在不同地点(超市)产品销售量之间的方差即为组间方差。

   另一个叫组内方差,即水平内部的方差,是衡量同一个总体下样本数据的方差。在组内方差里仅包括随机性差异。如:在例1中,可以把同一个颜色的饮料在不同地点(超市)产品销售量之间的差异看成是随机因素的影响,同一个颜色的饮料在不同地点(超市)产品销售量之间的方差即为组内方差。


   如果不同的水平对结果没有影响,如: 饮料的不同颜色对销售量无影响,那么在水平之间的方差中,就仅仅有随机因素影响的差异,而没有系统性因素影响的差异。这样一来,组间方差与组内方差就应该非常接近,两个方差的比值就会接近于1;反之,如果饮料的不同颜色对销售量有影响,在组间方差中就不仅包括了随机性误差,也包括了系统性误差,这时,组间方差就会大于组内方差,两个方差的比值就会大于1。当这个比值大到某种程度时,我们就可以作出判断,说不同水平之间存在着显著性差异。一次,方差分析就是通过不同方差的比较,作出接受原假设或拒绝原假设的判断。如:例子中,判断饮料的不同颜色对销售量是否有显著性影响的问题,实际上也就是检验销售量的差异主要是由于什么原因所引起的。如果这种差异主要是系统性误差,我们就说饮料的不同颜色对销售量有显著性影响。


1.2 理论公式

image.png

image.png


上述参数根据公式即可十分方便的计算出,但是F值和P值需要查表

1.3  手算示例

第一步、建立假设

原假设 H0:μ1=μ2=μ3=μ4;即假设颜色对销售量没有影响。

备择假设H1: μ1、μ2、μ3、μ4不全相等;即假设四个配方颜色对销售量有影响。

第二步、计算水平均值

无色饮料销售量均值=136.6÷5=27.32箱

粉色饮料销售量均值=147.8÷5=29.56箱

桔黄色饮料销售量均值=132.2÷5=26.44箱

绿色饮料销售量均值=157.3÷5=31.46箱

第三步、计算全部观察值的总均值

各种颜色饮料销售量总的样本平均数=(136.6+147.8+132.2+157.3)÷20=28.695箱

第四步、计算离差平方和

20200415220555496.png

20200415220540325.png


第五步、构造统计量并计算检验统计量的样本值

20200415220650130.png

第六步、确定检验规则、列出方差分析表、做出统计决策

P-值规则:


根据算得的检验统计量的样本值(F值)算出P-值=0.000466。由于P-值=0.000495<显著水平标准=0.05,所以拒绝H0,接受备择假设H1,即通过检验知,μj不全相等,说明饮料的颜色对销售量有显著影响。


F值规则:


根据给定的显著水平a=0.05,查表得临界值为3.24。因为F=10.486>3.24,检验统计量的样本值落入拒绝域,所以拒绝H0,接受备择假设H1,即通过检验知,μj不全相等,说明饮料的颜色对销售量有显著影响。

20200415221231695.png

p值大于显著水平,支持原假设,F值大于临界值(由显著水平得到),拒绝原假设。



相关文章
|
14天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
11天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
15天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
11天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
15天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
13天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
13天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
215 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现