运筹优化学习23:单因素方差分析理论及Matlab代码实现(上)

简介: 运筹优化学习23:单因素方差分析理论及Matlab代码实现

今天有兴趣学习了一下单因素方差分析,在此做一个总结,希望对后来者有用

文章参考了以下博客文章:

举例分析方差分析ANOVA

1 理论基础

单因素方差分析是研究影响某个指标的单个因素在不同水平下的相关性的重要方法,下面是几个重要概念:

1.1 基础概念

1.1.1 示例

如我们要研究饮料颜色与饮料销售量的关系,那么:

  • 饮料销售量就是我们要观测的试验指标
  • 饮料颜色表示的是影响饮料销售量的因素
  • 因素的具体体现为多种水平,即橘黄色、粉色、绿色和无色透明
  • 每个水平要要进行多组观测,如在不同的超市进行


aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy8xMTA5ODI1OC04ZDA0OTJiNmY2Mzk0YzY1LnBuZw.png

从表中看到,20个数据各不相同,其原因可能有两个方面:


一是销售地点不同的影响。即使是相同颜色的饮料,在不同超市的销售量也是不同的。但是,由于这五个超市地理位置相似、经营规模相仿,因此,可以把不同地点产品销售量的差异看成是随机因素的影响。

二是饮料颜色不同的影响。即使在同一个超市里,不同颜色的饮料的销售量也是不同的。哪怕它们的营养成分、味道、价格、包装等方面的因素都相同,但销售量也不相同。这种不同,有可能是由于抽样的随机性造成的,也有可能是由于人们对不同颜色的偏爱造成的。

   于是,上述问题就归结为检验饮料颜色对销售量是否有影响的问题。我们可以令μ1、μ2、μ3、μ4分别为四种颜色饮料的平均销售量,检验它们是否相等。如果检验结果显示μ1、μ2、μ3、μ4不相等,则意味着不同颜色的饮料来自于不同的总体,表明饮料颜色对销售量有影响;反之,如果检验结果显示μ1、μ2、μ3、μ4之间不存在显著性差异,则意味着不同颜色的饮料来自于相同的总体,可认为饮料颜色对销售量没有影响。

1.1.2 分析

从方差分析的目的来看,是要检验各个水平的均值μ1、μ2、…、μm是否相等(m为水平个数),而实现这个目的的手段是通过方差的比较(即考察各观察数据的差异)。在变量的观察值之间存在着差异。


差异的产生来自于两个方面。一个方面是由因素中的不同水平造成的,称之为系统性差异(或系统性误差)。如:饮料的不同颜色带来不同的销售量。另一个方面是由于抽选样本的随机性而产生的差异,称之为随机性差异(或随机性误差)。如:相同颜色的饮料在不同的商场销售量也不同。


两个方面产生的差异可以用两个方差来计量。

   一个叫组间方差,即水平之间的方差,是衡量不同总体下各样本之间差异的方差。在组间方差里,既包括系统性误差,也包括随机性误差。如:在例1中,不同颜色的饮料在不同地点(超市)产品销售量之间的差异既有系统性误差(即由于人们对不同颜色的偏爱造成的差异),也有随机性误差(即由于抽样的随机性造成的差异)。不同颜色的饮料在不同地点(超市)产品销售量之间的方差即为组间方差。

   另一个叫组内方差,即水平内部的方差,是衡量同一个总体下样本数据的方差。在组内方差里仅包括随机性差异。如:在例1中,可以把同一个颜色的饮料在不同地点(超市)产品销售量之间的差异看成是随机因素的影响,同一个颜色的饮料在不同地点(超市)产品销售量之间的方差即为组内方差。


   如果不同的水平对结果没有影响,如: 饮料的不同颜色对销售量无影响,那么在水平之间的方差中,就仅仅有随机因素影响的差异,而没有系统性因素影响的差异。这样一来,组间方差与组内方差就应该非常接近,两个方差的比值就会接近于1;反之,如果饮料的不同颜色对销售量有影响,在组间方差中就不仅包括了随机性误差,也包括了系统性误差,这时,组间方差就会大于组内方差,两个方差的比值就会大于1。当这个比值大到某种程度时,我们就可以作出判断,说不同水平之间存在着显著性差异。一次,方差分析就是通过不同方差的比较,作出接受原假设或拒绝原假设的判断。如:例子中,判断饮料的不同颜色对销售量是否有显著性影响的问题,实际上也就是检验销售量的差异主要是由于什么原因所引起的。如果这种差异主要是系统性误差,我们就说饮料的不同颜色对销售量有显著性影响。


1.2 理论公式

image.png

image.png


上述参数根据公式即可十分方便的计算出,但是F值和P值需要查表

1.3  手算示例

第一步、建立假设

原假设 H0:μ1=μ2=μ3=μ4;即假设颜色对销售量没有影响。

备择假设H1: μ1、μ2、μ3、μ4不全相等;即假设四个配方颜色对销售量有影响。

第二步、计算水平均值

无色饮料销售量均值=136.6÷5=27.32箱

粉色饮料销售量均值=147.8÷5=29.56箱

桔黄色饮料销售量均值=132.2÷5=26.44箱

绿色饮料销售量均值=157.3÷5=31.46箱

第三步、计算全部观察值的总均值

各种颜色饮料销售量总的样本平均数=(136.6+147.8+132.2+157.3)÷20=28.695箱

第四步、计算离差平方和

20200415220555496.png

20200415220540325.png


第五步、构造统计量并计算检验统计量的样本值

20200415220650130.png

第六步、确定检验规则、列出方差分析表、做出统计决策

P-值规则:


根据算得的检验统计量的样本值(F值)算出P-值=0.000466。由于P-值=0.000495<显著水平标准=0.05,所以拒绝H0,接受备择假设H1,即通过检验知,μj不全相等,说明饮料的颜色对销售量有显著影响。


F值规则:


根据给定的显著水平a=0.05,查表得临界值为3.24。因为F=10.486>3.24,检验统计量的样本值落入拒绝域,所以拒绝H0,接受备择假设H1,即通过检验知,μj不全相等,说明饮料的颜色对销售量有显著影响。

20200415221231695.png

p值大于显著水平,支持原假设,F值大于临界值(由显著水平得到),拒绝原假设。



相关文章
|
4天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
9天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
15天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
18天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
21天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
54 0
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
26天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
122 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
下一篇
无影云桌面