机器学习选择题解析加整理
项目说明,本项目是李宏毅老师在飞桨授权课程的配套问题
课程 传送门
该项目AiStudio项目 传送门
仅供学习参考!
三岁出品必是精品!
整理内容源于李宏毅老师机器学习课程群提问答疑解析内容!
单选题(一)
机器学习训练时,Mini-Batch 的大小优选为2个的幂,如 256 或 512。它背后的原因是什么?
A. Mini-Batch 为偶数的时候,梯度下降算法训练的更快
B. Mini-Batch 设为2的幂,是为了符合CPU、GPU的内存要求,利于并行化处理
C. 不使用偶数时,损失函数是不稳定的
D. 以上说法都不对
答案:B
解析:略
下列说法错误的是?
A. 当目标函数是凸函数时,梯度下降算法的解一般就是全局最优解
B. 进行 PCA 降维时,需要计算协方差矩阵
C. 沿负梯度的方向一定是最优的方向
D. 利用拉格朗日函数能解带约束的优化问题
答案:C
解析:沿负梯度的方向是函数值减少最快的方向但不一定就是最优方向。
关于 L1、L2 正则化下列说法正确的是?
A. L2 正则化能防止过拟合,提升模型的泛化能力,但 L1 做不到这点
B. L2 正则化技术又称为 Lasso Regularization
C. L1 正则化得到的解更加稀疏
D. L2 正则化得到的解更加稀疏
答案:C
解析:L1、L2 正则化都能防止过拟合,提升模型的泛化能力。L1 正则化技术又称为 Lasso Regularization。L1 正则化得到的解更加稀疏。
“增加卷积核的尺寸,一定能提高卷积神经网络的性能。” 这句话是否正确?
A. 正确
B. 错误
答案:B
解析:卷积核的尺寸是超参数,不一定增加其尺寸就一定增加神经网络的性能,需要验证选择最佳尺寸。
有 N 个样本,一般用于训练,一般用于测试。若增大 N 值,则训练误差和测试误差之间的差距会如何变化?
A. 增大
B. 减小
答案:B
解析:增加数据,能够有效减小过拟合,减小训练样本误差和测试样本误差之间的差距。
在回归模型中,下列哪一项在权衡欠拟合(under-fitting)和过拟合(over-fitting)中影响最大?
A. 多项式阶数
B. 更新权重 w 时,使用的是矩阵求逆还是梯度下降
C. 使用常数项
答案:A
解析:选择合适的多项式阶数非常重要。如果阶数过大,模型就会更加复杂,容易发生过拟合;如果阶数较小,模型就会过于简单,容易发生欠拟合。
如果我们说“线性回归”模型完美地拟合了训练样本(训练样本误差为零),则下面哪个说法是正确的?
A.测试样本误差始终为零
B.测试样本误差不可能为零
C.以上答案都不对
答案:C
解析:略
多选题(一)
下列方法中,可以用于特征降维的方法包括?
A. 主成分分析 PCA
B. 线性判别分析 LDA
C. AutoEncoder
D. 矩阵奇异值分解 SVD
E. 最小二乘法 LeastSquares
答案:ABCD
解析:主成分分析 PCA 、线性判别分析 LDA 、AutoEncoder、矩阵奇异值分解 SVD 都是用于特征降维的方法。最小二乘法是解决线性回归问题的算法,但是并没有进行降维。
下列关于极大似然估计(Maximum Likelihood Estimate,MLE),说法正确的是?
A. MLE 可能并不存在
B. MLE 总是存在
C. 如果 MLE 存在,那么它的解可能不是唯一的
D. 如果 MLE 存在,那么它的解一定是唯一的
答案:AC
解析:如果极大似然函数 L(θ) 在极大值处不连续,一阶导数不存在,则 MLE 不存在;另一种情况是 MLE 并不唯一,极大值对应两个θ。
下列哪种方法可以用来减小过拟合?
A. 更多的训练数据
B. L1 正则化
C. L2 正则化
D. 减小模型的复杂度
答案:ABCD
解析:略
单选题(二)
关于循环神经网络(RNN)描述正确的是
A.可以用于处理序列数据
B.不能处理可变长序列数据
C.不同于卷积神经网络,RNN的参数不能共享
D.隐藏层上面的unit彼此没有关联
答案:A
解析:RNN可以设置单独的句子长度参数,也能参数共享,隐藏层的神经元也是彼此作用的
下面梯度下降说法错误的是?
A.随机梯度下降是梯度下降中常用的一种
B.梯度下降包括随机梯度下降和批量梯度下降
C.梯度下降算法速度快且可靠
D.随机梯度下降是深度学习算法当中常用的优化算法之一
答案:C
解析:梯度下降一般只全量更新,效率低,所以随机梯度相比梯度下降,每次只选择部分样本做更新,效率更高,速度更快
下面关于无监督学习描述正确的是
A.无监督算法只处理“特征”,不处理“标签”
B.降维算法不属于无监督学习
C.K-meas算法和SVM算法都属于无监督学习
D.以上都不对
答案:A
解析:SVM属于监督学习算法,降维是非监督
"在一个神经网络里,知道每一个神经元的权重和偏差是最重要的一步,如果以某种方法知道了神经网络准确的权重和偏差,你就可以近似任何函数,实现这个最佳的方法是什么?
A.随机赋值,祈祷它们是正确的
B.搜索所有权重的偏差的组合,直到得到最佳值
C.赋予一个初始值,通过检查跟最佳值的差值,然后迭代更新权重
D.以上都不是
答案:C
解析:这是神经网络算法的原理
关于神经网络与深度学习的关系表述不正确的是?
A.深度学习的概念源于人工神经网络的研究
B.含有多个隐层的神经网络算法就是一种深度学习算法
C.单层神经网络也是深度学习的一种
D.卷积神经网络属于深度学习的一种
答案:C
解析:深度学习一般至少包含输入层,隐藏层,输出层,不是单层。
以下关于卷积神经网络,说法正确的是?
A.卷积神经网络只能有一个卷积核
B.卷积神经网络可以有多个卷积核,但是必须同大小
C.卷积神经网络可以有多个卷积核,可以不同大小
D.卷积神经网络不能使用在文本这种序列数据中
答案:C
解析:可以多个卷积核;大小也可以在不同的层,设置不同的值;在NLP领域也可以使用CNN做特征提取
以下关于逻辑回归的说法不正确的是?
A.逻辑回归必须对缺失值做预处理
B.逻辑回归要求自变量和目标变量是线性关系
C.逻辑回归比决策树,更容易过度拟合
D.逻辑回归只能做2值分类,不能直接做多值分类
答案:C
解析:决策树是更容易过拟合的
多选题(二)
训练误差会降低模型的准确率,产生欠拟合,此时如何提升模拟拟合度?
A.增加数据量
B.特征工程
C.减少正则化参数
D.提高模型复杂度
答案:B、C、D
解析:训练误差来自模型算法本身,和数据量大小无关
对于PCA说法正确的是?
A.我们必须在使用PCA前规范化数据
B.我们应该选择使得模型有最大variance的主成分
C.我们应该选择使得模型有最小variance的主成分
D.我们可以使用PCA在低维度上做数据可视化
答案:A、B、D
解析:主成分是能对数据产生巨大影响的,因此产生巨大影响的那么对于方差的影响肯定也很大,所以C不对
有关集成学习下列说法正确的是?
A.基本模型应尽量来自于同一算法,通过改变训练数据和参数,得到不同的基本模型
B.通常来讲,基本模型之间相关性应该低一些
C.集成的基本模型的数量越多,集成模型的效果就越好
D.bagging boosting 时常用的集成学习的方法
答案:B、D
解析:集成算法可以集成不同算法模型,这也正式集成算法有效的原因;基本模型越多,也可能导致过拟合,在模型选择上,应保证效果好的情况下再考虑集成
传说中的飞桨社区最菜代码人,让我们一起努力!
记住:三岁出品必是精品 (不要脸系列)