m基于matlab的wcdma软切换算法的研究分析和仿真

简介: m基于matlab的wcdma软切换算法的研究分析和仿真

1.算法概述

    软切换是WCDMA系统的关键技术之一,软切换算法和相关参数的设置直接影响着系统的容量和服务质量。通过WCDMA系统的软切换技术可以提高小区覆盖率和系统容量。所以软切换技术是WCDMA系统中一个十分关键的技术。首先,在概述WCDMA系统的无线资源管理功能和切换技术的基础上,详细介绍了WCDMA系统中的软切换过程。通过Matlab对WCDMA进行系统级的仿真,并对传统的软切换技术进行仿真分析,提出了其存在的缺陷,然后在此基础上提出了改进的软切换算法,并对改进后的算法进行了性能分析。通过研究,WCDMA软切换对下行容量的影响与软切换比例密切相关,在相同的条件下,改进后的软切换算法较传统的软切换算法,具有更佳的软切换增益值。本文总结得到的仿真结果,可以作为WCDMA系统实际应用的参考和借鉴。

   软切换,指的是用户的移动设备在载波频率相同的小区之间进行信道的切换。在软切换的过程中,用户完全有可能同时和两个或更多的基站进行通信,在切换过程中,软切换不需要改变设备的频率,也不会出现信号中断的情况,通常情况下,软切换进一步能分为软切换和更软切换两种类型。软切换:在这种切换过程中,当移动台开始与一个新的基站联系时,并不立即中断与原来基站之间的通信,即“先连后断”。

1.png

   软切换过程和硬切换相似,就是在区域边界出会频繁的出现反复切换的现象,这也是所谓的乒乓效应。但由于软切换过程是先连后断进行,所以一般不会出现硬切换中频繁掉话的现象。而更软切换则是软切换的一种特殊情况。这种切换形式发生在同一基站的具有相同频率的不同扇区之间。软切换和更软切换的主要区别在于:软切换发生在两个Node-B之间,分集信号在RNC中合并处理;而更软切换则发生在同个Node-B内,分集信号在Node-B中做最大增益合并。这里,具体就不多做介绍了。

   通常,WCDMA系统中的软切换过程划分为以下三个步骤:无线测量、网络判决、系统执行。软切换执行的阶段示意图如下:

2.png

   其中,无线测量由UE和Node-B完成的;网络判决在RNC中进行;系统执行在UE、Node-B和RNC共同协作下完成。

  切换测量阶段,移动台要首先要测量下行链路的信号质量、所属的小区及临近小区的信号能量;测量结果被送到相关的RRC层。

  切换判决阶段。测量结果与预先设定的门限进行比较,以决定是否执行切换操作,同时要进行接纳控制,防止别的小区由于别的用户的加入,从而导致降低已有用户的通信质量。

   在执行阶段,移动台先进入软切换状态,RNC根据测量结果判决切换的目标,并通知移动台进行切换,一个新基站或小区被加入、释放或者替换。

2.仿真效果预览
matlab2022a仿真

3.png
4.png
5.png
6.png
7.png

3.MATLAB部分代码预览

for i = 0.1:0.001:0.6
f(index) = 1;
index = index + 1;
end
for i = 0.601:0.001:1
f(index) = 1.137-0.637*i^3;   
index = index + 1;
end
 
 
if select == 1
%将负载因子引入到参数选择中,
%边缘覆盖率算法对比
figure;
delta=10;
M    =0:1:40;
Y = 0.5 + 0.5*erf(M/(sqrt(2)*delta));
plot(Y,'b-o');title('边缘覆盖率与衰落余量');hold on;
 
delta= 10;
M    = 0:1:40;
pp   = 0.773;
k    = 1;
Y = 0.5 + 0.5*erf(M/(k*f(1000*pp)*sqrt(2)*delta));
plot(Y,'r-o');title('边缘覆盖率与衰落余量');
legend('传统算法','改进算法');
grid on;
 
xlabel('衰落余量M');
ylabel('边缘覆盖率');
end
 
 
 
 
if select == 2
%软切换增益
figure;
delta = 10;
a     = 0.7071;
b     = 0.7071;
M     = -20:2:10;
index = 1;
n     = 3;
for i = 1:length(M)
syms  x;    
i
v=0;
Q=0;
data3 = 0;
v=((M(i)+a*delta*x)/(b*delta));
Q = 1/(sqrt(2*pi))*int(exp(-x^2/2),x,v,100);
data3 = 1 - 1/(sqrt(2*pi))*int(exp(-x^2/2)*Q^n,x,-100,100);
value2(i) = double(data3);
index = index + 1;
end
 
plot(M,value2,'r-o');hold on
Y = 0.5 + 0.5*erf(M/(sqrt(2)*delta));
plot(M,Y,'b-o');title('采用三个软切换的仿真对比图');hold off
legend('软切换','未通过软切换');
save value2.mat value2
 
xlabel('衰落余量M');
ylabel('边缘覆盖率');
end
 
 
if select == 3
%软切换增益
figure;
delta = 10;
a     = 0.7071;
b     = 0.7071;
M     = -20:2:10;
pp    = 0.773;
k     = 1;
index = 1;
n = 3;
for i = 1:length(M)
syms  x;    
i
v=0;
Q=0;
data3 = 0;
v=((M(i)+a*delta*x)/(b*delta/(k*f(1000*pp))));
Q = 1/(sqrt(2*pi))*int(exp(-x^2/2),x,v,100);
data3 = 1 - 1/(sqrt(2*pi))*int(exp(-x^2/2)*Q^n,x,-100,100);
value3(i) = double(data3);
index = index + 1;
end
 
plot(M,value3,'r-o');hold on
Y = 0.5 + 0.5*erf(M/(sqrt(2)*delta));
plot(M,Y,'b-o');title('采用三个软切换的仿真对比图');hold off
legend('软切换','未通过软切换');
save value3.mat value3
xlabel('衰落余量M');
ylabel('边缘覆盖率');
end
 
if select ==4
    M = -20:2:10;
    load value2.mat
    load value3.mat
    
    plot(M,value2,'r-o');hold on
    plot(M,value3,'b-o');hold off
    legend('原算法','改进后算法');    
    xlabel('衰落余量M');
    ylabel('软切换增益');
end
 
if select == 5
    figure;
    load value2.mat
    load value3.mat    
    M=8:0.25:9;
    for i = 1:length(M)
    Ss_Sh1(i)=10^(M(i)/(40)); 
    Ss_Sh2(i)=10^((1+(value3(i)-value2(i)))*M(i)/(40)); 
    end
    plot(10*M,Ss_Sh2,'b-o');hold on;
    plot(10*M,Ss_Sh1,'r-o');hold on;
   
    
    legend('改进后的算法的小区面积扩大倍数','传统算法的小区面积扩大倍数');
    title('小区面积扩大倍数的分析仿真图');
    xlabel('边界覆盖率');
    ylabel('小区面积扩大倍数');    
end
 
 
 
 
 
if select == 6
    
   pp    = 0.603;
   k     = 1; 
    
   figure;
   Rh_R=0:0.1:0.9;
   for i=1:length(Rh_R)
      x(i) = (1 - 2*pi/(3*sqrt(3))*Rh_R(i)^2); 
   end
   subplot(121);
   plot(Rh_R,x,'r-*');title('软切换开销(比例)');
   xlabel('边界覆盖范围');
   ylabel('软切换开销'); 
   %由于计算公式是否复杂,以下数据是传统的方法得到的,根据数据计算得到改进后的数据
   XX   = [0   5    10   15    20   25   30   35    40    45  ];
   Ps1A = [10  12.5 12.8 10    7.75 9.25 7.25 12    16.25 9.75];
   Ps1S = [0.5 1.0  0.63 0.44  0.3  0.41 0.4  0.68  0.77  0.97];
   PSHO = [0.6 0.2  0.5  0.43  0.4  0.5  0.4  0.88  1.77  0.97];
   
   G=(Ps1A./(Ps1S + PSHO)) -1 ;
   subplot(122);
   plot(XX,G,'b-*');title('下行软切换增益');grid on;hold on;
   G=(Ps1A./(Ps1S + (k*f(1000*pp))*PSHO)) -1 ;
   plot(XX,G,'r-o');title('软切换增益');grid on;   
   legend('传统算法','改进后算法');
    xlabel('衰落余量M');
    ylabel('下行软切换增益');
end
 
01_032_m
相关文章
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
16小时前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
1天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
15 6
|
6天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
225 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码