优化Pytorch模型训练的小技巧

简介: 优化Pytorch模型训练的小技巧

在本文中,我将描述并展示4种不同的Pytorch训练技巧的代码,这些技巧是我个人发现的,用于改进我的深度学习模型的训练。

混合精度

在一个常规的训练循环中,PyTorch以32位精度存储所有浮点数变量。对于那些在严格的约束下训练模型的人来说,这有时会导致他们的模型占用过多的内存,迫使他们使用更小的模型和更小的批处理大小进行更慢的训练过程。所以在模型中以16位精度存储所有变量/数字可以改善并修复大部分这些问题,比如显著减少模型的内存消耗,加速训练循环,同时仍然保持模型的性能/精度。

在Pytorch中将所有计算转换为16位精度非常简单,只需要几行代码。这里是:

scaler=torch.cuda.amp.GradScaler()

上面的方法创建一个梯度缩放标量,以最大程度避免使用fp16进行运算时的梯度下溢。

optimizer.zero_grad()
withtorch.cuda.amp.autocast():
output=model(input).to(device)
loss=criterion(output, correct_answer).to(device)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

当使用loss和优化器进行反向传播时,您需要使用scale .scale(loss),而不是使用loss.backward()和optimizer.step()。使用scaler.step(optimizer)来更新优化器。这允许你的标量转换所有的梯度,并在16位精度做所有的计算,最后用scaler.update()来更新缩放标量以使其适应训练的梯度。

当以16位精度做所有事情时,可能会有一些数值不稳定,导致您可能使用的一些函数不能正常工作。只有某些操作在16位精度下才能正常工作。具体可参考官方的文档。

进度条

有一个进度条来表示每个阶段的训练完成的百分比是非常有用的。为了获得进度条,我们将使用tqdm库。以下是如何下载并导入它:

pipinstalltqdmfromtqdmimporttqdm

在你的训练和验证循环中,你必须这样做:

forindex, batchintqdm(enumerate(loader), total=len(loader), position=0, leave=True):

训练和验证循环添加tqdm代码后将得到一个进度条,它表示您的模型完成的训练的百分比。它应该是这样的:

640.png

在图中,691代表我的模型需要完成多少批,7:28代表我的模型在691批上的总时间,1.54 it/s代表我的模型在每批上花费的平均时间。

梯度积累

如果您遇到CUDA内存不足的错误,这意味着您已经超出了您的计算资源。为了解决这个问题,你可以做几件事,包括把所有东西都转换成16位精度,减少模型的批处理大小,更换更小的模型等等。

但是有时切换到16位精度并不能完全解决问题。解决这个问题最直接的方法是减少批处理大小,但是假设您不想减少批处理大小可以使用梯度累积来模拟所需的批大小。请注意,CUDA内存不足问题的另一个解决方案是简单地使用多个GPU,但这是一个很多人无法使用的选项。

假设你的机器/模型只能支持16的批处理大小,增加它会导致CUDA内存不足错误,并且您希望批处理大小为32。梯度累加的工作原理是:以16个批的规模运行模型两次,将计算出的每个批的梯度累加起来,最后在这两次前向传播和梯度累加之后执行一个优化步骤。

要理解梯度积累,重要的是要理解在训练神经网络时所做的具体功能。假设你有以下训练循环:

model=model.train()
forindex, batchinenumerate(train_loader):
input=batch[0].to(device)
correct_answer=batch[1].to(device)
optimizer.zero_grad()
output=model(input).to(device)
loss=criterion(output, correct_answer).to(device)
loss.backward()
optimizer.step()

看看上面的代码,需要记住的关键是loss.backward()为模型创建并存储梯度,而optimizer.step()实际上更新权重。在如果在调用优化器之前两次调用loss.backward()就会对梯度进行累加。下面是如何在PyTorch中实现梯度累加:

model=model.train()
optimizer.zero_grad()
forindex, batchinenumerate(train_loader):
input=batch[0].to(device)
correct_answer=batch[1].to(device)
output=model(input).to(device)
loss=criterion(output, correct_answer).to(device)
loss.backward()
if (index+1) %2==0:
optimizer.step()
optimizer.zero_grad()

在上面的例子中,我们的机器只能支持16批大小的批量,我们想要32批大小的批量,我们本质上计算2批的梯度,然后更新实际权重。这导致有效批大小为32。

译者注:梯度累加只是一个折中方案,经过我们的测试,如果对梯度进行累加,那么最后一次loss.backward()的梯度会比前几次反向传播的权重高,具体为什么我们也不清楚,哈。虽然有这样的问题,但是使用这种方式进行训练还是有效果的。

16位精度的梯度累加非常类似。

model=model.train()
optimizer.zero_grad()
forindex, batchinenumerate(train_loader):
input=batch[0].to(device)
correct_answer=batch[1].to(device)
withtorch.cuda.amp.autocast():
output=model(input).to(device)
loss=criterion(output, correct_answer).to(device)
scaler.scale(loss).backward()
if (index+1) %2==0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()

结果评估

在大多数机器学习项目中,人们倾向于手动计算用于评估的指标。尽管计算准确率、精度、召回率和F1等指标并不困难,但在某些情况下,您可能希望拥有这些指标的某些变体,如加权精度、召回率和F1。计算这些可能需要更多的工作,如果你的实现可能不正确、高效、快速且无错误地计算所有这些指标,可以使用sklearns classification_report库。这是一个专门为计算这些指标而设计的库。

fromsklearn.metricsimportclassification_reporty_pred= [0, 1, 0, 0, 1]
y_correct= [1, 1, 0, 1, 1]print(classification_report(y_correct, y_pred))

上面的代码用于二进制分类。你可以为更多的目的配置这个函数。第一个列表表示模型的预测,第二个列表表示正确数值。上面的代码将输出:

image.png

结论

在这篇文章中,我讨论了4种pytorch中优化深度神经网络训练的方法。16位精度减少内存消耗,梯度积累可以通过模拟使用更大的批大小,tqdm进度条和sklearns的classification_report两个方便的库,可以轻松地跟踪模型的训练和评估模型的性能。就我个人而言,我总是用上面所有的训练技巧来训练我的神经网络,并且在必要的时候我使用梯度积累。

最后,如果你使用的是pytorch或者是pytorch的初学者,可以使用这个库:https://github.com/deephub-ai/torch-handle,他会对你有很大的帮助。

目录
相关文章
|
6月前
|
机器学习/深度学习 PyTorch 测试技术
从训练到推理:Intel Extension for PyTorch混合精度优化完整指南
PyTorch作为主流深度学习框架,凭借动态计算图和异构计算支持,广泛应用于视觉与自然语言处理。Intel Extension for PyTorch针对Intel硬件深度优化,尤其在GPU上通过自动混合精度(AMP)提升训练与推理性能。本文以ResNet-50在CIFAR-10上的实验为例,详解如何利用该扩展实现高效深度学习优化。
335 0
|
4月前
|
机器学习/深度学习 算法 安全
近端策略优化算法PPO的核心概念和PyTorch实现详解
近端策略优化(PPO)是强化学习中的关键算法,因其在复杂任务中的稳定表现而广泛应用。本文详解PPO核心原理,并提供基于PyTorch的完整实现方案,涵盖环境交互、优势计算与策略更新裁剪机制。通过Lunar Lander环境演示训练流程,帮助读者掌握算法精髓。
540 54
|
4月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
252 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
3月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
5月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
336 9
|
5月前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
835 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
6月前
|
机器学习/深度学习 SQL 运维
数据库出问题还靠猜?教你一招用机器学习优化运维,稳得一批!
数据库出问题还靠猜?教你一招用机器学习优化运维,稳得一批!
187 4
|
6月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
6月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。

热门文章

最新文章

推荐镜像

更多