使用梯度上升欺骗神经网络,让网络进行错误的分类(一)

简介: 使用梯度上升欺骗神经网络,让网络进行错误的分类

在本教程中,我将将展示如何使用梯度上升来解决如何对输入进行错误分类。

640.gif

出如何使用梯度上升改变一个输入分类

神经网络是一个黑盒。理解他们的决策需要创造力,但他们并不是那么不透明。

在本教程中,我将向您展示如何使用反向传播来更改输入,使其按照想要的方式进行分类。

人类的黑盒

首先让我们以人类为例。如果我向你展示以下输入:

640.png

很有可能你不知道这是5还是6。事实上,我相信我可以让你们相信这也可能是8。

现在,如果你问一个人,他们需要做什么才能把一个东西变成5,你可能会在视觉上做这样的事情:

640.png

如果我想让你把这个变成8,你可以这样做:

640.png

现在,用几个if语句或查看几个系数不容易解释这个问题的答案。并且对于某些类型的输入(图像,声音,视频等),可解释性无疑会变得更加困难,但并非不可能。

神经网络怎么处理

一个神经网络如何回答我上面提出的同样的问题?要回答这个问题,我们可以用梯度上升来做。

这是神经网络认为我们需要修改输入使其更接近其他分类的方式。

640.png

由此产生了两个有趣的结果。首先,黑色区域是我们需要去除像素密度的网络物体。第二,黄色区域是它认为我们需要增加像素密度的地方。

我们可以在这个梯度方向上采取一步,添加梯度到原始图像。当然,我们可以一遍又一遍地重复这个过程,最终将输入变为我们所希望的预测。

640.png

你可以看到图片左下角的黑斑和人类的想法非常相似。

640.png

让输入看起来更像8怎么样?这是网络认为你必须改变输入的方式。

640.png

值得注意的是,在左下角有一团黑色的物质在中间有一团明亮的物质。如果我们把这个和输入相加,我们得到如下结果:

640.png

在这种情况下,我并不特别相信我们已经将这个5变成了8。但是,我们减少了5的概率,说服你这个是8的论点肯定会更容易使用 右侧的图片,而不是左侧的图片。

梯度

在回归分析中,我们通过系数来了解我们所学到的知识。在随机森林中,我们可以观察决策节点。

在神经网络中,它归结为我们如何创造性地使用梯度。为了对这个数字进行分类,我们根据可能的预测生成了一个分布。

这就是我们说的前向传播

640.gif

在前进过程中,我们计算输出的概率分布

代码类似这样:

640.png

现在假设我们想要欺骗网络,让它预测输入x的值为“5”,实现这一点的方法是给它一个图像(x),计算对图像的预测,然后最大化预测标签“5”的概率。

为此,我们可以使用梯度上升来计算第6个索引处(即label = 5) (p)相对于输入x的预测的梯度。

640.png

为了在代码中做到这一点,我们将输入x作为参数输入到神经网络,选择第6个预测(因为我们有标签:0,1,2,3,4,5,…),第6个索引意味着标签“5”。

视觉上这看起来像:

640.gif

目录
相关文章
|
4月前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
104 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
13天前
|
存储 安全 网络架构
网络设备的分类和功能、机柜布局、网络设备安装
中继器是局域网互连的最简单设备,它工作在OSI体系结构的物理层,它接收并识别网络信号,然后再生信号并将其发送到网络的其他分支上。要保证中继器能够正确工作,首先要保证每一个分支中的数据包和逻辑链路协议是相同的。
|
1月前
|
存储 数据管理 网络虚拟化
特殊网络类型分类
本文介绍了网络技术中的关键概念,包括虚拟局域网(VLAN)、存储区域网络(SAN)、网络桥接、接入网以及按拓扑结构和交换方式分类的网络类型。VLAN通过逻辑分隔提高性能与安全性;SAN提供高性能的数据存储解决方案;网络桥接实现不同网络间的互联互通;接入网解决“最后一千米”的连接问题。此外,文章详细对比了总线型、星型、树型、环型和网状型等网络拓扑结构的特点,并分析了电路交换、报文交换和分组交换的优缺点,为网络设计与应用提供了全面参考。
76 8
|
4月前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
174 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
4月前
|
机器学习/深度学习 存储 大数据
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
95 11
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
|
4月前
|
计算机视觉
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
107 5
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
|
4月前
|
机器学习/深度学习 存储 大数据
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
155 0
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
|
4月前
|
计算机视觉
YOLOv11改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
YOLOv11改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
265 0
|
6月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot编码的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
228 2
|
7月前
|
网络协议 网络安全 数据安全/隐私保护
计算机网络概念:网关,DHCP,IP寻址,ARP欺骗,路由,DDOS等
计算机网络概念:网关,DHCP,IP寻址,ARP欺骗,路由,DDOS等
127 4

热门文章

最新文章