手推公式:LSTM单元梯度的详细的数学推导

简介: 手推公式:LSTM单元梯度的详细的数学推导

长短期记忆是复杂和先进的神经网络结构的重要组成部分。本文的主要思想是解释其背后的数学原理,所以阅读本文之前,建议首先对LSTM有一些了解。

介绍

640.png

上面是单个LSTM单元的图表。我知道它看起来可怕😰,但我们会通过一个接一个的文章,希望它会很清楚。

解释

基本上一个LSTM单元有4个不同的组件。忘记门、输入门、输出门和单元状态。我们将首先简要讨论这些部分的使用,然后深入讨论数学部分。

忘记门

顾名思义,这部分负责决定在最后一步中扔掉或保留哪些信息。这是由第一个s型层完成的。


根据h_t-1(以前的隐藏状态)和x_t(时间步长t的当前输入),它为单元格状态C_t-1中的每个值确定一个介于0到1之间的值。

640.png

遗忘门和上一个状态

如果为1,所有的信息保持原样,如果为0,所有的信息都被丢弃,对于其他的值,它决定有多少来自前一个状态的信息被带入下一个状态。

输入门

640.png

Christopher Olah博客的解释在输入门发生了什么:

下一步是决定在单元格状态中存储什么新信息。这包括两部分。首先,一个称为“输入门层”的sigmoid层决定我们将更新哪些值。接下来,一个tanh层创建一个新的候选值的向量,C~t,可以添加到状态中。在下一步中,我们将结合这两者来创建对状态的更新。

现在这两个值i。e i_t和c~t结合决定什么新的输入是被输入到状态。

单元状态

640.png

单元状态充当LSTM的内存。这就是它们在处理较长的输入序列时比普通RNN表现得更好的地方。在每一个时间步长,前一个单元状态(C_t-1)与遗忘门结合,以决定什么信息要被传送,然后与输入门(i_t和c~t)结合,形成新的单元状态或单元的新存储器。

640.png

状态的计算公式

输出门

640.png

最后,LSTM单元必须给出一些输出。从上面得到的单元状态通过一个叫做tanh的双曲函数,因此单元状态值在-1和1之间过滤。

LSTM单元的基本单元结构已经介绍完成,继续推导在实现中使用的方程。

推导先决条件

推导方程的核心概念是基于反向传播、成本函数和损失。除此以外还假设您对高中微积分(计算导数和规则)有基本的了解。

变量:对于每个门,我们有一组权重和偏差,表示为:

  • W_f,b_f->遗忘门的权重和偏差
  • W_i,b_i->输入门的权重和偏差
  • W_c,b_c->单元状态的权重和偏差
  • W_o,b_o->输出门的权重和偏差
  • W_v ,b_v -> 与Softmax层相关的权重和偏差
  • f_t, i_t,c_tilede_t, o_t -> 输出使用的激活函数
  • a_f, a_i, a_c, a_o -> 激活函数的输入

J是成本函数,我们将根据它计算导数。注意(下划线(_)后面的字符是下标)

前向传播推导

640.png

门的计算公式

640.png

状态的计算公式

以遗忘门为例说明导数的计算。我们需要遵循下图中红色箭头的路径。

640.png

我们画出一条从f_t到代价函数J的路径,也就是

f_t→C_t→h_t→J。

反向传播完全发生在相同的步骤中,但是是反向的

f_t←C_t←h_t←J。

J对h_t求导,h_t对C_t求导,C_t对f_t求导。

所以如果我们在这里观察,J和h_t是单元格的最后一步,如果我们计算dJ/dh_t,那么它可以用于像dJ/dC_t这样的计算,因为:

dJ/dC_t = dJ/dh_t * dh_t/dC_t(链式法则)

同样,对第一点提到的所有变量的导数也要计算。

现在我们已经准备好了变量并且清楚了前向传播的公式,现在是时候通过反向传播来推导导数了。我们将从输出方程开始因为我们看到在其他方程中也使用了同样的导数。这时就要用到链式法则了。我们现在开始吧。

反向传播推导

lstm的输出有两个值需要计算。

Softmax:对于交叉熵损失的导数,我们将直接使用最终的方程。

640.jpg

隐藏状态是h_t。h_t是w.r的微分。根据链式法则,推导过程如下图所示。

640.png

输出门相关变量:a_o和o_t,微分的完整方程如下:

dJ/dV_t * dV_t/dh_t * dh_t/dO_t

dJ/dV_t * dV_t/dh_t可以写成dJ/dh_t(我们从隐藏状态得到这个值)。

h_t的值= o_t * tanh(c_t) ->所以我们只需要对h_t w.r求导。t o_t。其区别如下:

640.png

同样,a_o和J之间的路径也显示出来。微分的完整方程如下:

dJ/dV_t * dV_t/dh_t * d_t /da_o

dJ/dV_t * dV_t/dh_t * dh_t/dO_t可以写成dJ/dO_t(我们从上面的o_t得到这个值)。

640.png

C_t是单元的单元状态。除此之外,我们还处理候选单元格状态a_c和c~_t。

C_t的推导很简单,因为从C_t到J的路径很简单。C_t→h_t→V_t→j,因为我们已经有了dJ/dh_t,我们直接微分h_t w.r。t C_t。

h_t = o_t * tanh(c_t) ->所以我们只需要对h_t w.r求导。t C_t。

640.png

微分的完整方程如下:

dJ/dh_t * dh_t/dC_t * dC_t/dc~_t

可以将dJ/dh_t * dh_t/dC_t写成dJ/dC_t(我们在上面有这个值)。

C_t的值如图9公式5所示(下图第3行最后一个C_t缺少波浪号(~)符号->书写错误)。所以我们只需要对C_t w.r求导。t c ~ _t。

640.png

a_c:如下图所示为a_c到J的路径。根据箭头,微分的完整方程如下:

dJ/dh_t * dh_t/dC_t * dC_t/ da_c

dJ/dh_t * dh_t/dC_t * dC_t/dc_t可以写成dJ/dc_t(我们在上面有这个值)。

所以我们只需要对c~_t w.r求导。t a_c。

640.png

输入门相关变量:i_t和a_i

微分的完整方程如下:

d_t / d_t * d_t /di_t

可以将dJ/dh_t * dh_t/dC_t写入为dJ/dC_t(我们在单元格状态中有这个值)。所以我们只需要对C_t w.r求导。t i_t。

640.png

a_i:微分的完整方程如下:

dJ/dh_t * dh_t/dC_t * d_t /da_i

dJ/dh_t * dh_t/dC_t * dC_t/di_t可以写成dJ/di_t(我们在上面有这个值)。所以我们只需要对i_t w.r求导。t ai。

640.png

遗忘门相关变量:f_t和a_f

微分的完整方程如下:

dJ/dh_t * dh_t/dC_t * dC_t/df_t

可以将dJ/dh_t * dh_t/dC_t写入为dJ/dC_t(我们在单元格状态中有这个值)。所以我们只需要对C_t w.r求导。t f_t。

640.png

a_f:微分的完整方程如下:

dJ/dh_t * dh_t/dC_t * df_t/da_t

dJ/dh_t * dh_t/dC_t * dC_t/df_t可以写成dJ/df_t(我们在上面有这个值)。所以我们只需要对f_tw.r求导。t a_f。

640.png

Lstm的输入

每个单元格i有两个与输入相关的变量。前一个单元格状态C_t-1和前一个隐藏状态与当前输入连接,即

[h_t-1,x_t] > Z_t

C_t-1:这是Lstm单元的内存。图5显示了单元格状态。c - t-1的推导很简单因为只有c - t和c - t。

640.png

Z_t:如下图所示,Z_t进入四个不同的路径,a_f,a_i,a_o,a_c。

Z_t→a_f→f_t→C_t→h_t→J。- >遗忘门

Z_t→a_i→i_t→C_t→h_t→J。- >输入门

Z_t→a_c→c~_t→C_t→h_t→J。->单元状态

Z_t→a_o→o_t→C_t→h_t→J。- >输出门

640.png

权重和偏差

W和b的推导很简单。下面的推导是针对Lstm的输出门的。对于其余的门,对权重和偏差也进行了类似的处理。

640.png

640.png

输入和遗忘门的权重和偏差

640.png

640.png

输出和输出门的权重和偏差

J/d_W_f = dJ/da_f。da_f / d_W_f ->遗忘门

dJ/d_W_i = dJ/da_i。da_i / d_W_i ->输入门

dJ/d_W_v = dJ/dV_tdV_t/ d_W_v ->输出门

dJ/d_W_o = dJ/da_o。da_o / d_W_o ->输出门

我们完成了所有的推导。但是有两点需要强调

到目前为止,我们所做的只是一个时间步长。现在我们要让它只进行一次迭代。

所以如果我们有总共T个时间步长,那么每一个时间步长的梯度会在T个时间步长结束时相加,所以每次迭代结束时的累积梯度为:

640.png

每次迭代结束时的累积梯度用来更新权重

640.png

总结

LSTM是非常复杂的结构,但它们工作得非常好。具有这种特性的RNN主要有两种类型:LSTM和GRU。

训练LSTMs也是一项棘手的任务,因为有许多超参数,而正确地组合通常是一项困难的任务。

目录
相关文章
|
8月前
|
机器学习/深度学习 算法 Python
LSTM(长短期记忆)网络的算法介绍及数学推导
LSTM(长短期记忆)网络的算法介绍及数学推导
173 0
|
8月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
5月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
5月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
215 2
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
7月前
|
机器学习/深度学习 数据采集
RNN、LSTM、GRU神经网络构建人名分类器(一)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
119 6
|
7月前
|
机器学习/深度学习 存储 自然语言处理
RNN与LSTM:循环神经网络的深入理解
【6月更文挑战第14天】本文深入探讨RNN和LSTM,两种关键的深度学习模型在处理序列数据时的作用。RNN利用记忆单元捕捉时间依赖性,但面临梯度消失和爆炸问题。为解决此问题,LSTM引入门控机制,有效捕获长期依赖,适用于长序列处理。RNN与LSTM相互关联,LSTM可视为RNN的优化版本。两者在NLP、语音识别等领域有广泛影响,未来潜力无限。
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测

热门文章

最新文章