MySQL查询性能优化(下)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL查询性能优化(下)

上一期主要对MySQL的查询过程进行了简要的梳理,理解了一条SQL执行的过程需要经过MySQL的各种组件,本期我们将重点探索下MySQL查询性能优化的方法。


5 MySQL查询优化器的局限


MySQL查询优化器对于以下几种类型的查询是不适用的。


5.1 关联子查询


where条件中包含in子句的子查询语句。例如:


select * from a where a.id in (select b.id from b where b.name = 'zhongger')


对于这类查询,MySQL会将表a进行全表扫描,然后根据表a的id逐个去执行in语句中的子查询。如果a表很大,那么这个查询性能会非常差。


5.2 Union的限制


当需要对结果集合并时,需要使用union子句。例如:


(select a.name from a order by a.name) union all (select b.name from b order by b.name) limit 10

这是将两个查询结果合并,然后取前10条记录。MySQL对于这条SQL的处理是把a表中的记录和b表中的记录存放在一个临时表中,然后再从临时表取出10条记录。如果a,b表的记录很大,那么这样子性能也是很慢的。可以将上述SQL改写成如下形势:


(select a.name from a order by a.name limit 10) union all (select b.name from b order by b.name limit 10) limit 10


5.3 索引合并优化


当where条件中包含多个复杂条件的时,MySQL能够访问单个表的多个索引以合并和交叉过滤的方式来定位需要查找的行。


5.4 等值查询


等值传递也会带来意想不到的额外消耗。例如:有一个非常大的IN列表,而MySQL优化器发现存在where、on或者using的子句,将这个列表的值和另一个的某个列相关联。


在执行查询时,查询优化器会将In列表都复制到关联的各个表中来进行匹配关联,如果IN列表非常大,则会导致执行和优化都会变慢。


5.5 并行执行


MySQL无法利用CPU多核的特性来并行执行查询。


5.6 哈希关联


MySQL不支持哈希关联(MySQL的所有关联都是嵌套循环关联的)


5.7 松散索引扫描


MySQL不支持松散索引扫描,也就无法按照不连续的方式扫描一个索引。例如:有覆盖索引(a,b),SQL语句:


select * from t where b between 2 and 3


因为索引的最左前缀列是a,但查询中只覆盖了列b,故MySQL不走索引,只能全表扫描。


5.8 最大值和最小值局限


对于Min()和Max()查询,MySQL的优化做得并不好。例如:


  • select min(id) from t where name = 'zhongger'


因为在name字段上没有索引,所以MySQL会有一次全表扫描。如果MySQL能够进行主键扫描,那么理论上MySQL读到第一个满足条件的记录时,就需要我们找到的最小值了,因为主键索引中的叶子节点是按照id的大小顺序排序。但是MySQL这时还是会做全表扫描。一个优化方法是:


  • select id from t use index(primary) where name = 'zhongger' limit 1


这可以让MySQL扫描尽可能少的记录。


6 优化特定类型的查询


前面做了这么多的铺垫,都是为了这一小节能够对查询优化的理解更加深刻。下面一起来看下吧。


6.1 优化count()查询


count()是一个聚合函数,它的主要作用是:


  • 统计某个列值的数量
  • 统计表的记录的行数


在统计列值的时候,要求列值是非空的(即不统计NULL值),如果在count()的括号中传入了列或者列的表达式作为参数,则统计的就是这个列或列表达式有值的结果数。如果在在count()的括号中传入了通配符*作为参数,则会统计结果集中的所有行数。


如果希望知道结果集的行数,最好使用count(*),而不是count(结果集中的某一列),这样意义清晰而且性能更好。


简单的优化


在不加任何where条件时,MyISAM存储引擎因为有对表的行数进行存储,所以有些情况下可以考虑使用MyISAM存储引擎来优化count(*)。


使用近似值


有些时候某些业务场景并不要求完全精确的count值,因此可以使用近似值来代替。像一些弱一致性的场景,没必要每次都去数据库中查count,可以考虑利用Redis缓存来提升效率。


更复杂的优化


通常来说,count需要扫描大量的行才可以获取精确的结果,因此还是比较难优化的。此外,可以考虑新建立一个汇总表,每写入一条记录,汇总表对应的记录就加1,查询count时只需要查一遍汇总表的数字即可,这样可以避免全表扫描,当然这样也增加了维护的难度。


快速,精确和实现简单,三者只能取其二。


6.2 优化关联查询


对于这条关联SQL:

  • select * from a inner join b on a.id = b.id

优化需要注意如下的点:


  • 确保on或者using子句中的列有索引。此外,在创建索引的时候也要考虑到表关联的顺序
  • 确保任何的group by和order by中的表达式只涉及一个表中的列,这样MySQL才有可能使用索引来优化这个过程
  • 当升级MySQL时需要注意:关联语法、运算符优先级等可能会发生变化的地方。以前是普通关联的地方可能会变成笛卡尔积,不同类型的关联可能会生成不同的结果等


6.3 优化子查询


MySQL5.6以下的版本,子查询最好使用关联查询来代替;MySQL5.6及以上的版本,子查询已经被优化了。


6.4 优化group by和distinct


  • 大多数场景下,MySQL会采用索引来优化group by查询。
  • 当无法使用索引时,group by优化策略是使用临时表或者文件排序来做分组,可以通过SQL_BIG_RESULT和SQL_SMALL_RESULT来让优化器进行优化。
  • 如果对关联查询做group by,且按照查找表中的某列进行分组,那么常采用查找表的标识列来group by会比其他列效率高。例如:select * from a inner join b on a.id = b.id group by a.id的效率比 select * from a inner join b on a.id = b.id group by a.name高。


6.5 优化limit分页


在系统中需要进行分页操作的时候,我们通常会使用limit加上offset的方法实现,同时加上合适的order by子句。如果有对应的索引,效率通常会不错;否则,MySQL需要做大量的文件查询。


在offset非常大时,例如limit 10000,20这样的查询,这时MySQL要查询10020条记录然后只返回最后20条,前面10000条记录都将被抛弃,这样的代价非常高。要优化这种查询,要么是在页面中限制分页的数量,要么是优化大offerset的性能。


优化此类分页查询的一个最简单的方法是尽可能地使用索引覆盖扫描,而非查询所有的列,然后根据需要做一次关联操作再返回所需要的列。对于offset很大的时候,这么做的效率会有很大的提升。对于如下SQL:


select id, name from a order by title limit 50, 5;


如果a表非常大,那么这个查询最好改写成下面形式:


select a.id , a.name from a inner join (select a.id fom a order by title limit 50,5) as lim using(a.id);


这让MySQL扫描尽可能少的页面,获取需要访问的记录后再根据关联列返回原表查询需要的所有列,因为利用了聚簇索引去扫描。


有时也可以将limit转为已知未知的查询,让MySQL通过范围扫描获得结果,例如改写成:


select id, name from a order by title limit 50, 5 where position between 50 and 54 order by position


对于大的offset,会使得MySQL扫描大量不需要的行然后抛弃掉。可以采用书签的方式,记录上次取数据的位置,下次就可以从书签记录的位置开始扫描,这样就可以避免使用offerset。


6.6 优化Union查询


MySQL总是通过创建并填充临时表的方式来执行union查询,因此很多优化策略在union查询中没办法很好使用。所以需要将where、limit、order by等写到需要union的各个子查询中,以便优化器可以充分利用这些条件进行优化。


最后


MySQL查询性能优化是一个很大的课题,往往需要结合实际情况来制定优化策略。一般的步骤不外乎就是先explain分析,然后尽可能地利用索引,避免全表扫描,避免索引失效等。我是Zhongger,一个在互联网公司摸鱼写代码的打工人,你们的支持是我创作的最大动力,我们下期见~

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
1月前
|
SQL 缓存 监控
MySQL缓存机制:查询缓存与缓冲池优化
MySQL缓存机制是提升数据库性能的关键。本文深入解析了MySQL的缓存体系,包括已弃用的查询缓存和核心的InnoDB缓冲池,帮助理解缓存优化原理。通过合理配置,可显著提升数据库性能,甚至达到10倍以上的效果。
|
1月前
|
SQL 存储 关系型数据库
MySQL体系结构详解:一条SQL查询的旅程
本文深入解析MySQL内部架构,从SQL查询的执行流程到性能优化技巧,涵盖连接建立、查询处理、执行阶段及存储引擎工作机制,帮助开发者理解MySQL运行原理并提升数据库性能。
|
3月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
157 0
|
18天前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
储存过程(Stored Procedures) 和 函数(Functions) : 储存过程和函数允许用户编写 SQL 脚本执行复杂任务.
141 14
|
20天前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
以上概述了MySQL 中常见且重要 的几种 SQL 查询及其相关概念 这些知识点对任何希望有效利用 MySQL 进行数据库管理工作者都至关重要
62 15
|
1月前
|
SQL 监控 关系型数据库
SQL优化技巧:让MySQL查询快人一步
本文深入解析了MySQL查询优化的核心技巧,涵盖索引设计、查询重写、分页优化、批量操作、数据类型优化及性能监控等方面,帮助开发者显著提升数据库性能,解决慢查询问题,适用于高并发与大数据场景。
|
1月前
|
SQL 关系型数据库 MySQL
MySQL入门指南:从安装到第一个查询
本文为MySQL数据库入门指南,内容涵盖从安装配置到基础操作与SQL语法的详细教程。文章首先介绍在Windows、macOS和Linux系统中安装MySQL的步骤,并指导进行初始配置和安全设置。随后讲解数据库和表的创建与管理,包括表结构设计、字段定义和约束设置。接着系统介绍SQL语句的基本操作,如插入、查询、更新和删除数据。此外,文章还涉及高级查询技巧,包括多表连接、聚合函数和子查询的应用。通过实战案例,帮助读者掌握复杂查询与数据修改。最后附有常见问题解答和实用技巧,如数据导入导出和常用函数使用。适合初学者快速入门MySQL数据库,助力数据库技能提升。
|
2月前
|
存储 关系型数据库 MySQL
使用命令行cmd查询MySQL表结构信息技巧分享。
掌握了这些命令和技巧,您就能快速并有效地从命令行中查询MySQL表的结构信息,进而支持数据库维护、架构审查和优化等工作。
222 9
|
1月前
|
SQL 监控 关系型数据库
MySQL高级查询技巧:子查询、联接与集合操作
本文深入解析了MySQL高级查询的核心技术,包括子查询、联接和集合操作,通过实际业务场景展示了其语法、性能差异和适用场景,并提供大量可复用的代码示例,助你从SQL新手进阶为数据操作高手。
|
3月前
|
人工智能 Java 关系型数据库
Java的时间处理与Mysql的时间查询
本文总结了Java中时间与日历的常用操作,包括时间的转换、格式化、日期加减及比较,并介绍了MySQL中按天、周、月、季度和年进行时间范围查询的方法,适用于日常开发中的时间处理需求。

推荐镜像

更多