AI如何能比人类的眼睛看得更清楚?通俗的解释卷积神经网络

简介: AI如何能比人类的眼睛看得更清楚?通俗的解释卷积神经网络

视觉,源于自然

哺乳动物视觉皮层中的神经元被组织成一层一层地处理图像,其中一些神经元在识别线和边等局部特征方面具有特殊的功能;当位置和方向改变时,一些层被激活;其他层对复杂的形状(如交叉线)做出反应。

image.png

这激发了堆叠的卷积层,它包括将每个神经元的视野限制在输入图像的一小块区域。接受域的大小由过滤器的大小给出,也称为内核大小。当滤波器在图像中滑动时,它的工作原理就像信号处理中的卷积,因此它允许特征检测。

卷积是一个积分,表示一个函数(核函数或滤波器)在另一个函数(输入)上移位时的重叠量。卷积用于过滤信号(一维音频、二维图像处理),检查一个信号与另一个信号的相关性,或在信号中寻找模式。

例如,可以使用特定的内核从图像中提取边缘。

image.png

我们可以使用许多这样的过滤器来检测图像的所有有价值的特征。起初,这些过滤器是手工制作的;后来,他们从这些图像中自己学习。在训练中寻找权重的过程也会产生这些过滤器。

image.png

特征映射

我们需要多少这样的卷积?通过引入尺度的概念,借用分形数学,卷积神经网络将几个卷积层叠加起来,这样一来,第一个层可以识别更小的特征,而更深的层则专门处理更大的特征。

分形是一种具有无限尺度的图像。我们通常需要多少层就有多少层来检测尺度。单个卷积层的目的是在特定的单一尺度上学习一组特征。

每个卷积层也由层组成,但是这些层不是完全连接的。让我们假设一个28x28的RGB图像作为第一个卷积层的输入,带有四个3x3过滤器F1, F2, F3, F4。每个过滤器是大小为3x3x3的立方体形状,应用于整个图像,每次产生一个数字。

过滤器在图像中移动的步数称为stride,通常为1。生成的功能映射的深度等于过滤器的数量。它的宽度和高度取决于图像大小、过滤器大小和填充。

在我们的例子中,在全填充的情况下,我们将有一个feature map维度28x28x4。在没有填充的情况下,我们将拥有26x26x4维度。因此通道的数量不影响feature map的大小。

image.png

池化

卷积导致来自图像相邻区域的信息重复,导致高维性。池化卷积层输出的一个区域并返回一个聚合值:通常是最大值,但也可以使用平均值、最小值或任何函数。

CNNs在考虑多尺度时效果最好。因此,我们通常会多次复制convolutional和pooling层

获得更深层次的

将卷积层堆叠在一起的方法与其说是一门科学,不如说是一门艺术。下面的VGG网络是在2014年提出的,用于将1400万幅图像分类为1000个类别,测试准确率为92.7%。它接受了2周的训练,估计它的参数总量为14,714,688。还有更多这样的超大网络:GoogLeNet、ResNet、DenseNet、MobileNet、Xception、ResNeXt等等。

image.png

深度学习的一个建议和高度有效的方法是利用那些预先训练过的网络。一个预先训练好的网络只是一个之前在大数据集上训练过的保存的网络,它可以有效地作为真实世界的一个通用模型。

特征提取是一种使用预处理网络学习到的表示的方法,它以预处理网络的卷积基为基础,通过它运行新数据,并使用一个新的小数据集在输出之上训练一个新的简单分类器,如下图所示。

另一种方法是冻结预先训练好的网络的基础,附加一个简单的分类器,然后对整个网络进行训练。另一种被称为微调的方法是在训练前解冻基地的特定层。

总结

为计算机提供感知能力对社会有重大影响。如今,相机系统可以捕捉世界的实时图像,从而实现突破性的应用,比如自动驾驶。在本文中,我们解释了计算机视觉机器学习背后的一些机制。

目录
相关文章
|
14天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
4天前
|
机器学习/深度学习 人工智能 安全
AI与网络安全:防御黑客的新武器
在数字化时代,网络安全面临巨大挑战。本文探讨了人工智能(AI)在网络安全中的应用,包括威胁识别、自动化防御、漏洞发现和预测分析,展示了AI如何提升防御效率和准确性,成为对抗网络威胁的强大工具。
|
16天前
|
机器学习/深度学习 人工智能 物联网
5G与AI融合:智能网络的新纪元
【10月更文挑战第25天】
37 3
|
17天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
18 2
|
17天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
24 1
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
21 0
|
10天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
16天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。