AI如何能比人类的眼睛看得更清楚?通俗的解释卷积神经网络

简介: AI如何能比人类的眼睛看得更清楚?通俗的解释卷积神经网络

视觉,源于自然

哺乳动物视觉皮层中的神经元被组织成一层一层地处理图像,其中一些神经元在识别线和边等局部特征方面具有特殊的功能;当位置和方向改变时,一些层被激活;其他层对复杂的形状(如交叉线)做出反应。

image.png

这激发了堆叠的卷积层,它包括将每个神经元的视野限制在输入图像的一小块区域。接受域的大小由过滤器的大小给出,也称为内核大小。当滤波器在图像中滑动时,它的工作原理就像信号处理中的卷积,因此它允许特征检测。

卷积是一个积分,表示一个函数(核函数或滤波器)在另一个函数(输入)上移位时的重叠量。卷积用于过滤信号(一维音频、二维图像处理),检查一个信号与另一个信号的相关性,或在信号中寻找模式。

例如,可以使用特定的内核从图像中提取边缘。

image.png

我们可以使用许多这样的过滤器来检测图像的所有有价值的特征。起初,这些过滤器是手工制作的;后来,他们从这些图像中自己学习。在训练中寻找权重的过程也会产生这些过滤器。

image.png

特征映射

我们需要多少这样的卷积?通过引入尺度的概念,借用分形数学,卷积神经网络将几个卷积层叠加起来,这样一来,第一个层可以识别更小的特征,而更深的层则专门处理更大的特征。

分形是一种具有无限尺度的图像。我们通常需要多少层就有多少层来检测尺度。单个卷积层的目的是在特定的单一尺度上学习一组特征。

每个卷积层也由层组成,但是这些层不是完全连接的。让我们假设一个28x28的RGB图像作为第一个卷积层的输入,带有四个3x3过滤器F1, F2, F3, F4。每个过滤器是大小为3x3x3的立方体形状,应用于整个图像,每次产生一个数字。

过滤器在图像中移动的步数称为stride,通常为1。生成的功能映射的深度等于过滤器的数量。它的宽度和高度取决于图像大小、过滤器大小和填充。

在我们的例子中,在全填充的情况下,我们将有一个feature map维度28x28x4。在没有填充的情况下,我们将拥有26x26x4维度。因此通道的数量不影响feature map的大小。

image.png

池化

卷积导致来自图像相邻区域的信息重复,导致高维性。池化卷积层输出的一个区域并返回一个聚合值:通常是最大值,但也可以使用平均值、最小值或任何函数。

CNNs在考虑多尺度时效果最好。因此,我们通常会多次复制convolutional和pooling层

获得更深层次的

将卷积层堆叠在一起的方法与其说是一门科学,不如说是一门艺术。下面的VGG网络是在2014年提出的,用于将1400万幅图像分类为1000个类别,测试准确率为92.7%。它接受了2周的训练,估计它的参数总量为14,714,688。还有更多这样的超大网络:GoogLeNet、ResNet、DenseNet、MobileNet、Xception、ResNeXt等等。

image.png

深度学习的一个建议和高度有效的方法是利用那些预先训练过的网络。一个预先训练好的网络只是一个之前在大数据集上训练过的保存的网络,它可以有效地作为真实世界的一个通用模型。

特征提取是一种使用预处理网络学习到的表示的方法,它以预处理网络的卷积基为基础,通过它运行新数据,并使用一个新的小数据集在输出之上训练一个新的简单分类器,如下图所示。

另一种方法是冻结预先训练好的网络的基础,附加一个简单的分类器,然后对整个网络进行训练。另一种被称为微调的方法是在训练前解冻基地的特定层。

总结

为计算机提供感知能力对社会有重大影响。如今,相机系统可以捕捉世界的实时图像,从而实现突破性的应用,比如自动驾驶。在本文中,我们解释了计算机视觉机器学习背后的一些机制。

目录
相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
1089 56
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
5月前
|
人工智能 云栖大会 调度
「2025云栖大会」“简单易用的智能云网络,加速客户AI创新”专场分论坛诚邀莅临
”简单易用的智能云网络,加速客户AI创新“专场分论坛将于9月24日13:30-17:00在云栖小镇D1-5号馆举办,本场技术分论坛将发布多项云网络创新成果,深度揭秘支撑AI时代的超低时延、自适应调度与跨域协同核心技术。同时来自领先企业的技术先锋将首次公开其在模型训练、企业出海等高复杂场景中的突破性实践,展现如何通过下一代云网络实现算力效率跃升与成本重构,定义AI时代网络新范式。
227 4
|
6月前
|
人工智能 安全 网络安全
2025攻防演习回顾,AI赋能下的网络安全新格局
网络安全实战攻防演习历经9年发展,已成为检验安全体系、洞察威胁趋势的重要手段。攻击呈现实战化、体系化特征,APT、0day、勒索攻击等手段升级,AI、大数据等新技术带来新风险。攻击入口多元化、工具智能化、API成重点目标,“AI+人工”协同攻击加剧威胁。面对挑战,企业需构建纵深防御体系,从被动防御转向主动对抗。瑞数信息通过动态安全技术与AI融合,实现0day防护、漏扫干扰、勒索应急等能力,打造WAAP超融合平台,助力关键基础设施构建智能、协同、前瞻的主动防御体系。
558 1
|
6月前
|
机器学习/深度学习 传感器 人工智能
深度神经网络驱动的AI Agent
深度神经网络(DNN)驱动的AI Agent在实时预测中展现出强大能力,能够通过在线学习快速适应变化,广泛应用于金融、自动驾驶等领域,提升预测效率与决策水平。
|
5月前
|
人工智能 运维 安全
从被动防御到主动免疫进化!迈格网络 “天机” AI 安全防护平台,助推全端防护性能提升
迈格网络推出“天机”新版本,以AI自学习、全端防护、主动安全三大核心能力,重构网络安全防线。融合AI引擎与DeepSeek-R1模型,实现威胁预测、零日防御、自动化响应,覆盖Web、APP、小程序全场景,助力企业从被动防御迈向主动免疫,护航数字化转型。
从被动防御到主动免疫进化!迈格网络 “天机” AI 安全防护平台,助推全端防护性能提升
|
5月前
|
人工智能 运维 安全
AI来了,网络安全运维还能靠“人海战术”吗?
AI来了,网络安全运维还能靠“人海战术”吗?
291 28
|
5月前
|
机器学习/深度学习 资源调度 算法框架/工具
AI-ANNE: 将神经网络迁移到微控制器的深度探索——论文阅读
AI-ANNE框架探索将深度学习模型迁移至微控制器的可行路径,基于MicroPython在Raspberry Pi Pico上实现神经网络核心组件,支持本地化推理,推动TinyML在边缘设备中的应用。
325 10
|
5月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
534 11
|
5月前
|
人工智能 安全 网络安全
从不确定性到确定性,“动态安全+AI”成网络安全破题密码
2025年国家网络安全宣传周以“网络安全为人民,靠人民”为主题,聚焦AI安全、个人信息保护等热点。随着AI技术滥用加剧,智能化攻击频发,瑞数信息推出“动态安全+AI”防护体系,构建“三层防护+两大闭环”,实现风险前置识别与全链路防控,助力企业应对新型网络威胁,筑牢数字时代安全防线。(238字)
301 1