《MySQL高级篇》七、性能分析工具的使用(慢查询日志 | EXPLAIN | SHOW PROFILING | 视图分析 )(二)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 《MySQL高级篇》七、性能分析工具的使用(慢查询日志 | EXPLAIN | SHOW PROFILING | 视图分析 )

5. 查看 SQL 执行成本:SHOW PROFILE

22ae55b626e6e1ea54578d2b08018236.png

mysql> show variables like 'profiling';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| profiling     | OFF   | #当前是关闭状态
+---------------+-------+
1 row in set (0.01 sec)
mysql> set profiling = 'ON';#开启
Query OK, 0 rows affected, 1 warning (0.00 sec)

然后执行相关的查询语句。接着看下当前会话下有哪些profiles

mysql> SELECT * FROM student WHERE stuno = 3455655;
//...
mysql> SELECT * FROM student WHERE name = 'ZfCwDz';
//...
mysql> show profiles;
+----------+------------+---------------------------------------------+
| Query_ID | Duration   | Query                                       |
+----------+------------+---------------------------------------------+
|        1 | 0.00133475 | show variables like 'profiling'             |
|        2 | 0.00021050 | SELECT * FROM student WHERE stuno = 3455655 |
|        3 | 0.00053600 | SELECT DATABASE()                           |
|        4 | 0.01693325 | show databases                              |
|        5 | 0.00375125 | show tables                                 |
|        6 | 1.75597875 | SELECT * FROM student WHERE stuno = 3455655 |
|        7 | 1.11115150 | SELECT * FROM student WHERE name = 'ZfCwDz' |
+----------+------------+---------------------------------------------+
7 rows in set, 1 warning (0.00 sec)

你能看到当前会话一共有7个查询,如果我们想要查看最近一次查询的开销,可以使用

show profile;

1a208a75a95c6b3b4b70bb5111a87b1d.png

我们也可以查看指定的Query ID的开销,只需要后面跟上 for num。也可以查看不同部分的开销,比如CPU、block.io等

show profile cpu,block io for query 7;

b05a9a0b095cd2b2496295c622fdf402.png


通过如果发现上一条 sql 慢的原因在于执行慢(executing字段耗时多),就可以接着用 Explain 进行分析具体的 sql 语句。等后面我们为其建立索引,就可以大大提高效率了


🔊 show profile的常用查询参数:


① ALL:显示所有的开销信息。

② BLOCK IO:显示块 IO 开销。

③ CONTEXT SWITCHES:上下文切换开销。

④ CPU:显示 CPU 开销信息。

⑤ IPC:显示发送和接收开销信息。

⑥ MEMORY:显示内存开销信息。

⑦ PAGE FAULTS:显示页面错误开销信息。

⑧ SOURCE:显示和 Source_function,Source_file,Source_line 相关的开销信息。

⑨ SWAPS:显示交换次数开销信息。


🎨 日常开发需要注意的结论:


① Coverting Heap to MyISAM:查询结果太大,内存不够,正在往磁盘中迁移

② Creating tmp table:创建临时表,先拷贝数据到临时表,用完再删除临时表

③Coping to tmp table on disk:把内存中临时表复制到磁盘上,警惕!

④ locked


如果在 show profile 的查询结果中,出现了以上4条结果中的任何一条。则sql 语句需要优化


最后,还需要注意:


SHOW PROFILE 命令将被弃用,不过我们可以从 information_schema 中的 profiling 数据表进行查看


6. 分析查询语句:EXPLAIN(重点)


6.1 EXPLAIN 概述


0f20ee3121dfd0daee25ee3ba1db8b43.png


https://dev.mysql.com/doc/refman/5.7/en/explain-output.html

https://dev.mysql.com/doc/refman/8.0/en/explain-output.html


de7fcc7b8dbf7185f725b3005b5dca59.png


3. 版本情况


MySQL 5.6.3以前只能EXPLAIN SELECT ;MYSQL 5.6.3以后就可以EXPLAIN SELECT,UPDATE,DELETE


在5.7以前的版本中,想要显示partitions 需要使用explain partitions命令;想要显示

filtered 需要使用explain extended 命令。在5.7版本后,默认explain直接显示partitions和

filtered中的信息


76dca21873abe282bc211d8ebd1acf87.png


注意:EXPLAIN 仅仅是查看执行计划,不会真实的执行 sql


6.2 基本语法


EXPLAIN 或 DESCRIBE语句的语法形式如下:

EXPLAIN SELECT select_options
或者
DESCRIBE SELECT select_options

如果我们想看看某个查询的执行计划的话,可以在具体的查询语句前边加一个EXPLAIN ,就像这样:

mysql> EXPLAIN SELECT 1;


9a5762c760918391af90e5a10af5c529.png


7e286d10ad9a06464f4911aa5505bb79.png

EXPLAIN 语句输出的各个列的作用如下:


6f96464bb4a6d101534a0b93e49741b5.png

在这里把它们都列出来只是为了描述一个轮廓,让大家有一个大致的印象。

6.3 数据准备

1. 建表

CREATE TABLE s1 (
     id INT AUTO_INCREMENT,
     key1 VARCHAR(100),
     key2 INT,
     key3 VARCHAR(100),
     key_part1 VARCHAR(100),
     key_part2 VARCHAR(100),
     key_part3 VARCHAR(100),
     common_field VARCHAR(100),
      PRIMARY KEY (id),
      INDEX idx_key1 (key1),
      UNIQUE INDEX idx_key2 (key2),
      INDEX idx_key3 (key3),
      INDEX idx_key_part(key_part1, key_part2, key_part3)
) ENGINE=INNODB CHARSET=utf8;
CREATE TABLE s2 (
     id INT AUTO_INCREMENT,
     key1 VARCHAR(100),
     key2 INT,
     key3 VARCHAR(100),
     key_part1 VARCHAR(100),
     key_part2 VARCHAR(100),
     key_part3 VARCHAR(100),
     common_field VARCHAR(100),
      PRIMARY KEY (id),
      INDEX idx_key1 (key1),
      UNIQUE INDEX idx_key2 (key2),
      INDEX idx_key3 (key3),
      INDEX idx_key_part(key_part1, key_part2, key_part3)
) ENGINE=INNODB CHARSET=utf8;

注:建两个表方便联合查询

2. 创建存储函数

DELIMITER 
CREATE FUNCTION rand_string1(n INT)
    RETURNS VARCHAR(255) #该函数会返回一个字符串
BEGIN
DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
    DECLARE return_str VARCHAR(255) DEFAULT '';
    DECLARE i INT DEFAULT 0;
    WHILE i < n DO
        SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
        SET i = i + 1;
    END WHILE;
    RETURN return_str;
END 
DELIMITER ;

创建函数,假如报错,需设置参数 log_bin_trust_function_creators,允许创建函数设置

set global log_bin_trust_function_creators=1;   # 不加global只是当前窗口有效。

3. 创建存储过程

创建往 s1 表中插入数据的存储过程:

DELIMITER //
CREATE PROCEDURE insert_s1 (IN min_num INT (10),IN max_num INT (10))
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0;
    REPEAT
    SET i = i + 1;
    INSERT INTO s1 VALUES(
     (min_num + i),
     rand_string1(6),
     (min_num + 30 * i + 5),
     rand_string1(6),
     rand_string1(10),
     rand_string1(5),
     rand_string1(10),
     rand_string1(10));
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END //
DELIMITER ;

创建往 s2 表中插入数据的存储过程:

DELIMITER //
CREATE PROCEDURE insert_s2 (IN min_num INT (10),IN max_num INT (10))
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0;
    REPEAT
    SET i = i + 1;
    INSERT INTO s2 VALUES((min_num + i),
        rand_string1(6),
        (min_num + 30 * i + 5),
        rand_string1(6),
        rand_string1(10),
        rand_string1(5),
        rand_string1(10),
        rand_string1(10));
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END //
DELIMITER ;

4. 调用存储过程

s1 表数据的添加:加入 1 万条记录:

CALL insert_s1(10001,10000);

s2 表数据的添加:加入 1 万条记录:

CALL insert_s2(10001,10000);


6.4 EXPLAIN 各列作用

为了让大家有比较好的体验,我们调整了下EXPLAIN输出列的顺序。

6.4.1 table


不论我们的查询语句有多复杂,里边儿包含了多少个表 ,到最后也是需要对每个表进行单表访问的,所以 MySQL 规定 EXPLAIN 语句输出的每条记录都对应着某个单表的访问方法,该条记录的 table 列代表着该表的表名(有时不是真实的表名字,可能是简称)。


EXPLAIN SELECT * FROM s1 INNER JOIN s2;

如下图,一张表对应一个记录

7422bfdc6cf19b57ded5f4254ee65e35.png


注:临时表也会有对应的记录,比如我们使用UNION时就会出现临时表

6.4.2 id

例1:下面的查询结果,两个记录似乎id都是1.这是为什么呢?


81e902a5c7c9b5f221123284878eb8fa.png

实际上,在查询语句中每出现一个SELECT关键字,MySQL就会为它分配一个唯一的id ,代表着一次查询。这个id 就是 EXPLAIN语句的第一列。

例2:下面的查询中只有一个SELECT,所以EXPLAIN的结果中也就只有一条id为 1 的记录喽~


4ef38bf5e4227c4d210bbe65b1795fee.png

例3:下面的查询有两个SELECT,所以EXPLAIN的结果中 会有两条记录,且id分别就是1和2喽~ 。其中 s1被称为驱动表,s2被称为 被驱动表

fc6d95febc423e95d0260b14a944808d.png


例4:下面这条SQL有一个坑,请注意!!!

EXPLAIN SELECT * FROM s1 WHERE key1 IN (SELECT key2 FROM s2 WHERE common_field = 'a');


两个记录的 id 都是 1,小小的眼睛是否充满了大大的疑惑?

f8df290a5abe558b37d4d2d30214511a.png

这是因为优化器会对上面的 sql 语句进行优化,将其转换为多表连接,而不是子查询。因为子查询其实是一种嵌套查询的情况,其时间复杂度是 O(n^m),其中 m 是嵌套的层数,而多表查询的时间复杂度是 O(n*m)


例5:再看看 Union 联合查询的情况。

EXPLAIN SELECT * FROM s1 UNION SELECT * FROM s2;


结果是这样,竟然会出现三张表~ Amazing!

839dcd890063ae9e8bee825a692ee3a0.png

这是因为 Union 是取表的并集,需要建临时表进行去重,因此会有三条记录。可以看到第三条记录的 Extra 就标识了它是一张临时表哦。临时表 id 是 Null


例6:再看看 Union ALL:

EXPLAIN SELECT * FROM s1  UNION ALL SELECT * FROM s2;


产生两条记录,因为它不会去重~

19c7755d36ff35764187600cbcc8a589.png

💌小结

  1. id如果相同,可以认为是一组,从上往下顺序执行
  2. 在所有组中,id值越大,优先级越高,越先执行
  3. 关注点:id号每个号码,表示一趟独立的查询, 一个sql的查询趟数越少越好




相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
3月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
4月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
163 0
|
4月前
|
SQL 监控 关系型数据库
MySQL慢查询攻略
本文详细介绍了MySQL慢查询优化的全流程,从定位性能瓶颈到具体优化策略,再到高级调优与预防监控。首先通过开启慢查询日志和分析工具(如pt-query-digest)找到问题SQL,接着从索引优化(如最左前缀原则、覆盖索引)、SQL语句重构(如避免全表扫描)及EXPLAIN执行计划解析等方面进行核心优化。随后深入参数调优和架构升级,如调整innodb_buffer_pool_size、实施分库分表等。最后,通过实时监控工具(如PMM、Prometheus+Grafana)建立长效机制,并以电商订单查询为例,展示优化前后性能大幅提升的实战效果。
432 0
|
23天前
|
SQL 运维 关系型数据库
深入探讨MySQL的二进制日志(binlog)选项
总结而言,对MySQL binlogs深度理解并妥善配置对数据库运维管理至关重要;它不仅关系到系统性能优化也是实现高可靠性架构设计必须考虑因素之一。通过精心规划与周密部署可以使得该机能充分发挥作用而避免潜在风险带来影响。
57 6
|
2月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
173 10
|
5月前
|
SQL 监控 关系型数据库
MySQL日志分析:binlog、redolog、undolog三大日志的深度探讨。
数据库管理其实和写小说一样,需要规划,需要修订,也需要有能力回滚。理解这些日志的作用与优化,就像把握写作工具的使用与运用,为我们的数据库保驾护航。
220 23
|
3月前
|
运维 算法 机器人
阿里云AnalyticDB具身智能方案:破解机器人仿真数据、算力与运维之困
本文将介绍阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL推出的全托管云上仿真解决方案,方案采用云原生架构,为开发者提供从开发环境、仿真计算到数据管理的全链路支持。
|
23天前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
155 0
|
2月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。

推荐镜像

更多