m基于ACO蚁群优化的FCM模糊聚类算法matlab仿真

简介: m基于ACO蚁群优化的FCM模糊聚类算法matlab仿真

1.算法概述

   蚁群算法是通过对自然界中真实蚂蚁的集体行为的观察,模拟而得到一种仿生优化算法,它具有很好的并行性,分布性.根据蚂蚁群体不同的集体行为特征,蚁群算法可分为受蚂蚁觅食行为启发的模型和受孵化分类启发的模型,受劳动分工和协作运输启发的模型.本文重点研究了前两种蚁群算法模型. 受蚂蚁觅食行为启发的模型又称为蚁群优化算法(ACO),是继模拟退火算法,遗传算法,禁忌搜索等之后又一启发式智能优化算法.目前它已成功应用于求解TSP问题,地图着色,路径车辆调度等优化问题.本文针对蚁群算法收敛时间长,易陷入局部最优的缺点,通过对路径上信息素的更新方式作出动态调整,建立信息素平滑机制,进而使得不同路径上的信息素的更新速度有所不同,从而使改进后算法能够有效地缩短搜索的时间,并能对最终解进行优化,避免过早的陷入局部最优. 聚类是数据挖掘的重要技术之一,它可按照某种规则将数据对象划分为多个类或簇,使同一类的数据对象有较高的相似度,而不同类的数据对象差异较大.       

   用FCM算法实现基于目标函数的模糊聚类又称交替的迭代优化法。迭代优化本质上属于局部搜索的爬山法,很容易陷入局部极值点,因此对初始化很敏感。通常是根据一定的经验准则选取初始参数,这样计算结果与初始参数设置是否恰当密切相关。特别是在数据量较大和高维情况下,设置合理的参数非常困难,只能通过多次实验比较选定。由于初始聚类中心和样本的输入次序对最终的结果有重大影响,往往是用若干不同的初始中心和聚类数目分别聚类,然后选择最满意的聚类作为最终的结果。 通过蚁群算法,我们可以得到最佳的初始聚类中心,然后进行快速的聚类。

2.仿真效果预览
matlab2022a仿真结果如下:

1.png
2.png
3.png
4.png
5.png

3.核心MATLAB程序

 
X     = data;
%N =测试样本数;n =测试样本的属性数;
[N,n] = size(X); 
%K = 组数; 
K     = Class_Num; 
%R = 蚂蚁数; 
R     = 200;      
%t_max =最大迭代次数;  
t_max = 100;               
% 初始化
c     = 10^-1;
tau   = ones(N,K) * c;    %信息素矩阵,初始值为0.001的N*K矩阵(样本数*聚类数)
q     = 0.90;                % 阈值q
rho   = 0.1;              % 蒸发率
best_solution_function_value = inf; % 最佳路径度量值(初值为无穷大,该值越小聚类效果越好)
tic                     %计算程序运行时间
t = 1; 
 
%=======程序终止条件(下列两个终止条件任选其一)======
 while ((t<=t_max))                             %达到最大迭代次数而终止
%========================= 
    %路径标识字符:标识每只蚂蚁的路径
    solution_string = zeros(R,N+1);     
    for i = 1 : R                       %以信息素为依据确定蚂蚁的路径
        r = rand(1,N);    %随机产生值为0-1随机数的1*51的数组
        for g = 1 : N
            if r(g) < q     %如果r(g)小于阈值
                tau_max = max(tau(g,:));
                Cluster_number = find(tau(g,:)==tau_max);   %聚类标识数,选择信息素最多的路径
                solution_string(i,g) = Cluster_number(1);   %确定第i只蚂蚁对第g个样本的路径标识
            else            %如果r(g)大于阈值,求出各路径信息素占在总信息素的比例,按概率选择路径
                sum_p = sum(tau(g,:)); 
                p = tau(g,:) / sum_p; 
                for u = 2 : K 
                    p(u) = p(u) + p(u-1); 
                end
               rr = rand;          
                for s = 1 : K 
                    if (rr <= p(s)) 
                       Cluster_number = s;
                       solution_string(i,g) = Cluster_number;  
                    break; 
                end 
            end
        end
    end
 
    % 计算聚类中心
    weight = zeros(N,K);
       for h = 1:N              %给路径做计算标识
           Cluster_index = solution_string(i,h); %类的索引编号          
           weight(h,Cluster_index) = 1;          %对样本选择的类在weight数组的相应位置标1
       end
 
       cluster_center = zeros(K,n);  %聚类中心(聚类数K个中心)
       for j = 1:K
           for v = 1:n
               sum_wx = sum(weight(:,j).*X(:,v));   %各类样本各属性值之和
               sum_w = sum(weight(:,j));            %各类样本个数
               if sum_w==0                          %该类样本数为0,则该类的聚类中心为0
                 cluster_center(j,v) =0
                  continue;
               else                                 %该类样本数不为0,则聚类中心的值取样本属性值的平均值
               cluster_center(j,v) = sum_wx/sum_w;
               end
            end
       end
 
    % 计算各样本点各属性到其对应的聚类中心的均方差之和,该值存入solution_string的最后一位
      F = 0;
      for j= 1:K
          for ii = 1:N
              Temp=0;
              if solution_string(i,ii)==j;                
                  for v = 1:n
                      Temp = ((abs(X(ii,v)-cluster_center(j,v))).^2)+Temp;
                  end
                  Temp = sqrt(Temp);
              end
            F = (Temp)+F;
          end        
      end
 
       solution_string(i,end) = F;                      
 
    end 
    %根据F值,把solution_string矩阵升序排序
    [fitness_ascend,solution_index] = sort(solution_string(:,end),1);
    solution_ascend = [solution_string(solution_index,1:end-1) fitness_ascend];
 
    pls = 0.1;        %局部寻优阈值pls(相当于变异率)
    L = 2;              % 在L条路径内局部寻优
    % 局部寻优程序
    solution_temp = zeros(L,N+1);
    k = 1;
    while(k <= L)
           solution_temp(k,:) = solution_ascend(k,:);
           rp = rand(1,N);     %产生一个1*N(51)维的随机数组,某值小于pls则随机改变其对应的路径标识
           for i = 1:N
               if rp(i) <= pls
                   current_cluster_number = setdiff([1:K],solution_temp(k,i));
                   rrr=1+floor((K-2)*rand(1,1));
                   change_cluster = current_cluster_number(rrr);
                   solution_temp(k,i) = change_cluster;
               end
           end
 
        % 计算临时聚类中心   
           solution_temp_weight = zeros(N,K);
           for h = 1:N
               solution_temp_cluster_index = solution_temp(k,h);           
               solution_temp_weight(h,solution_temp_cluster_index) = 1;
           end
 
           solution_temp_cluster_center = zeros(K,n);
           for j = 1:K
               for v = 1:n
                   solution_temp_sum_wx = sum(solution_temp_weight(:,j).*X(:,v));
                   solution_temp_sum_w = sum(solution_temp_weight(:,j));
                   if solution_temp_sum_w==0
                   solution_temp_cluster_center(j,v) =0;
                   continue;
                   else
                       solution_temp_cluster_center(j,v) = solution_temp_sum_wx/solution_temp_sum_w;
                   end
               end
          end
          % 计算各样本点各属性到其对应的临时聚类中心的均方差之和Ft;
          solution_temp_F = 0;
          for j= 1:K
              for ii = 1:N
                  st_Temp=0;
                  if solution_temp(k,ii)==j;                               
                      for v = 1:n
                          st_Temp = ((abs(X(ii,v)-solution_temp_cluster_center(j,v))).^2)+st_Temp;
                      end
                      st_Temp = sqrt(st_Temp);
                  end
                  solution_temp_F = (st_Temp)+solution_temp_F;
              end
          end
        solution_temp(k,end) = solution_temp_F;   
        %根据临时聚类度量调整路径
        % 如果 Ft<Fl 则 Fl=Ft , Sl=St
          if solution_temp(k,end) <= solution_ascend(k,end)              
              solution_ascend(k,:) = solution_temp(k,:);               
          end
 
          if solution_ascend(k,end)<=best_solution_function_value
              best_solution = solution_ascend(k,:);
          end
      k = k+1;
      end   
 
    % 用最好的L条路径更新信息数矩阵
    tau_F = 0;
    for j = 1:L    
       tau_F = tau_F + solution_ascend(j,end);
    end
    for i = 1 : N        
       tau(i,best_solution(1,i)) = (1 - rho) * tau(i,best_solution(1,i)) + 1/ tau_F; 
    %1/tau_F和rho/tau_F效果都很好
    end 
    t=t+1
    best_solution_function_value =  solution_ascend(1,end);
end
02-011M
相关文章
|
7天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
5天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
4天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
6天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
19天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
153 80
|
7天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
12天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
15天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
11天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
16天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。