m基于ACO蚁群优化的FCM模糊聚类算法matlab仿真

简介: m基于ACO蚁群优化的FCM模糊聚类算法matlab仿真

1.算法概述

   蚁群算法是通过对自然界中真实蚂蚁的集体行为的观察,模拟而得到一种仿生优化算法,它具有很好的并行性,分布性.根据蚂蚁群体不同的集体行为特征,蚁群算法可分为受蚂蚁觅食行为启发的模型和受孵化分类启发的模型,受劳动分工和协作运输启发的模型.本文重点研究了前两种蚁群算法模型. 受蚂蚁觅食行为启发的模型又称为蚁群优化算法(ACO),是继模拟退火算法,遗传算法,禁忌搜索等之后又一启发式智能优化算法.目前它已成功应用于求解TSP问题,地图着色,路径车辆调度等优化问题.本文针对蚁群算法收敛时间长,易陷入局部最优的缺点,通过对路径上信息素的更新方式作出动态调整,建立信息素平滑机制,进而使得不同路径上的信息素的更新速度有所不同,从而使改进后算法能够有效地缩短搜索的时间,并能对最终解进行优化,避免过早的陷入局部最优. 聚类是数据挖掘的重要技术之一,它可按照某种规则将数据对象划分为多个类或簇,使同一类的数据对象有较高的相似度,而不同类的数据对象差异较大.       

   用FCM算法实现基于目标函数的模糊聚类又称交替的迭代优化法。迭代优化本质上属于局部搜索的爬山法,很容易陷入局部极值点,因此对初始化很敏感。通常是根据一定的经验准则选取初始参数,这样计算结果与初始参数设置是否恰当密切相关。特别是在数据量较大和高维情况下,设置合理的参数非常困难,只能通过多次实验比较选定。由于初始聚类中心和样本的输入次序对最终的结果有重大影响,往往是用若干不同的初始中心和聚类数目分别聚类,然后选择最满意的聚类作为最终的结果。 通过蚁群算法,我们可以得到最佳的初始聚类中心,然后进行快速的聚类。

2.仿真效果预览
matlab2022a仿真结果如下:

1.png
2.png
3.png
4.png
5.png

3.核心MATLAB程序

 
X     = data;
%N =测试样本数;n =测试样本的属性数;
[N,n] = size(X); 
%K = 组数; 
K     = Class_Num; 
%R = 蚂蚁数; 
R     = 200;      
%t_max =最大迭代次数;  
t_max = 100;               
% 初始化
c     = 10^-1;
tau   = ones(N,K) * c;    %信息素矩阵,初始值为0.001的N*K矩阵(样本数*聚类数)
q     = 0.90;                % 阈值q
rho   = 0.1;              % 蒸发率
best_solution_function_value = inf; % 最佳路径度量值(初值为无穷大,该值越小聚类效果越好)
tic                     %计算程序运行时间
t = 1; 
 
%=======程序终止条件(下列两个终止条件任选其一)======
 while ((t<=t_max))                             %达到最大迭代次数而终止
%========================= 
    %路径标识字符:标识每只蚂蚁的路径
    solution_string = zeros(R,N+1);     
    for i = 1 : R                       %以信息素为依据确定蚂蚁的路径
        r = rand(1,N);    %随机产生值为0-1随机数的1*51的数组
        for g = 1 : N
            if r(g) < q     %如果r(g)小于阈值
                tau_max = max(tau(g,:));
                Cluster_number = find(tau(g,:)==tau_max);   %聚类标识数,选择信息素最多的路径
                solution_string(i,g) = Cluster_number(1);   %确定第i只蚂蚁对第g个样本的路径标识
            else            %如果r(g)大于阈值,求出各路径信息素占在总信息素的比例,按概率选择路径
                sum_p = sum(tau(g,:)); 
                p = tau(g,:) / sum_p; 
                for u = 2 : K 
                    p(u) = p(u) + p(u-1); 
                end
               rr = rand;          
                for s = 1 : K 
                    if (rr <= p(s)) 
                       Cluster_number = s;
                       solution_string(i,g) = Cluster_number;  
                    break; 
                end 
            end
        end
    end
 
    % 计算聚类中心
    weight = zeros(N,K);
       for h = 1:N              %给路径做计算标识
           Cluster_index = solution_string(i,h); %类的索引编号          
           weight(h,Cluster_index) = 1;          %对样本选择的类在weight数组的相应位置标1
       end
 
       cluster_center = zeros(K,n);  %聚类中心(聚类数K个中心)
       for j = 1:K
           for v = 1:n
               sum_wx = sum(weight(:,j).*X(:,v));   %各类样本各属性值之和
               sum_w = sum(weight(:,j));            %各类样本个数
               if sum_w==0                          %该类样本数为0,则该类的聚类中心为0
                 cluster_center(j,v) =0
                  continue;
               else                                 %该类样本数不为0,则聚类中心的值取样本属性值的平均值
               cluster_center(j,v) = sum_wx/sum_w;
               end
            end
       end
 
    % 计算各样本点各属性到其对应的聚类中心的均方差之和,该值存入solution_string的最后一位
      F = 0;
      for j= 1:K
          for ii = 1:N
              Temp=0;
              if solution_string(i,ii)==j;                
                  for v = 1:n
                      Temp = ((abs(X(ii,v)-cluster_center(j,v))).^2)+Temp;
                  end
                  Temp = sqrt(Temp);
              end
            F = (Temp)+F;
          end        
      end
 
       solution_string(i,end) = F;                      
 
    end 
    %根据F值,把solution_string矩阵升序排序
    [fitness_ascend,solution_index] = sort(solution_string(:,end),1);
    solution_ascend = [solution_string(solution_index,1:end-1) fitness_ascend];
 
    pls = 0.1;        %局部寻优阈值pls(相当于变异率)
    L = 2;              % 在L条路径内局部寻优
    % 局部寻优程序
    solution_temp = zeros(L,N+1);
    k = 1;
    while(k <= L)
           solution_temp(k,:) = solution_ascend(k,:);
           rp = rand(1,N);     %产生一个1*N(51)维的随机数组,某值小于pls则随机改变其对应的路径标识
           for i = 1:N
               if rp(i) <= pls
                   current_cluster_number = setdiff([1:K],solution_temp(k,i));
                   rrr=1+floor((K-2)*rand(1,1));
                   change_cluster = current_cluster_number(rrr);
                   solution_temp(k,i) = change_cluster;
               end
           end
 
        % 计算临时聚类中心   
           solution_temp_weight = zeros(N,K);
           for h = 1:N
               solution_temp_cluster_index = solution_temp(k,h);           
               solution_temp_weight(h,solution_temp_cluster_index) = 1;
           end
 
           solution_temp_cluster_center = zeros(K,n);
           for j = 1:K
               for v = 1:n
                   solution_temp_sum_wx = sum(solution_temp_weight(:,j).*X(:,v));
                   solution_temp_sum_w = sum(solution_temp_weight(:,j));
                   if solution_temp_sum_w==0
                   solution_temp_cluster_center(j,v) =0;
                   continue;
                   else
                       solution_temp_cluster_center(j,v) = solution_temp_sum_wx/solution_temp_sum_w;
                   end
               end
          end
          % 计算各样本点各属性到其对应的临时聚类中心的均方差之和Ft;
          solution_temp_F = 0;
          for j= 1:K
              for ii = 1:N
                  st_Temp=0;
                  if solution_temp(k,ii)==j;                               
                      for v = 1:n
                          st_Temp = ((abs(X(ii,v)-solution_temp_cluster_center(j,v))).^2)+st_Temp;
                      end
                      st_Temp = sqrt(st_Temp);
                  end
                  solution_temp_F = (st_Temp)+solution_temp_F;
              end
          end
        solution_temp(k,end) = solution_temp_F;   
        %根据临时聚类度量调整路径
        % 如果 Ft<Fl 则 Fl=Ft , Sl=St
          if solution_temp(k,end) <= solution_ascend(k,end)              
              solution_ascend(k,:) = solution_temp(k,:);               
          end
 
          if solution_ascend(k,end)<=best_solution_function_value
              best_solution = solution_ascend(k,:);
          end
      k = k+1;
      end   
 
    % 用最好的L条路径更新信息数矩阵
    tau_F = 0;
    for j = 1:L    
       tau_F = tau_F + solution_ascend(j,end);
    end
    for i = 1 : N        
       tau(i,best_solution(1,i)) = (1 - rho) * tau(i,best_solution(1,i)) + 1/ tau_F; 
    %1/tau_F和rho/tau_F效果都很好
    end 
    t=t+1
    best_solution_function_value =  solution_ascend(1,end);
end
02-011M
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。

热门文章

最新文章