【阿旭机器学习实战】【25】决策树模型----树叶分类实战

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 【阿旭机器学习实战】【25】决策树模型----树叶分类实战

决策树进行树叶分类实战


1. 导入数据


import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection  import GridSearchCV
data = pd.read_csv('train.csv')
• 1
data.head()



image.png


5 rows × 194 columns


数据说明:

species类别,64个margin边缘特征,64个shape形状特征,64个texture质感特征


一共有99个树叶类别


data.shape
• 1
(990, 194)
• 1
# 查看树叶类别数
len(data.species.unique())
99
• 1


2. 特征工程


# 把字符串类别转化为数字形式
lb = LabelEncoder().fit(data.species) 
labels = lb.transform(data.species)    
# 去掉'species', 'id'这两列对于训练模型无用的列
data = data.drop(['species', 'id'], axis=1)  
data.head()


image.png


5 rows × 192 columns

labels[:5]
• 1
array([ 3, 49, 65, 94, 84], dtype=int64)
# 切分数据集
x_train,x_test,y_train,y_test = train_test_split(data, labels, test_size=0.2, stratify=labels)


3. 构建决策树模型


tree = DecisionTreeClassifier()
tree.fit(x_train, y_train)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
tree.score(x_test, y_test)
• 1
0.6767676767676768
• 1
tree.score(x_train, y_train)
• 1
1.0


结果表明该模型在训练集准确率为100%,而在测试集准确率仅有67%,存在过拟合现象,模型需要进一步优化。


4. 模型优化


# max_depth:树的最大深度
# min_samples_split:内部节点再划分所需最小样本数
# min_samples_leaf:叶子节点最少样本数
param_grid = {'max_depth': [10,15,20,25,30],
                    'min_samples_split': [2,3,4,5,6,7,8],
                    'min_samples_leaf':[1,2,3,4,5,6,7]}
# 网格搜索
model = GridSearchCV(tree, param_grid, cv=3)
model.fit(x_train, y_train)
print(model.best_estimator_)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=30,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=4, min_samples_split=5,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
model.score(x_train, y_train)
0.9444444444444444
model.score(x_test, y_test)
0.6868686868686869
相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
15天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
11天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
40 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
40 1
|
25天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
68 1
|
10天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
23 0
|
21天前
|
机器学习/深度学习 算法
探索机器学习模型的可解释性
【10月更文挑战第29天】在机器学习领域,一个关键议题是模型的可解释性。本文将通过简单易懂的语言和实例,探讨如何理解和评估机器学习模型的决策过程。我们将从基础概念入手,逐步深入到更复杂的技术手段,旨在为非专业人士提供一扇洞悉机器学习黑箱的窗口。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
59 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练

热门文章

最新文章

相关产品

  • 人工智能平台 PAI
  • 下一篇
    无影云桌面