Pytorch手撕Alexnet神经网络(CIFAR10数据集)-详细注释-完整代码可直接运行

简介: Pytorch手撕Alexnet神经网络(CIFAR10数据集)-详细注释-完整代码可直接运行
import torch
import torchvision
import torchvision.models
from PIL import Image
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
toPIL = transforms.ToPILImage()  # 将图像数据转换为PIL格式
trans = transforms.Compose([transforms.Resize((120, 120)),  # 将图像统一调整为120*120大小
                            transforms.ToTensor()])  # 将图像数据转换为张量
train_data = torchvision.datasets.CIFAR10(root="./data", train=True, download=True,  # 导入CIFAR10数据集的训练集
                                          transform=trans)
traindata = DataLoader(dataset=train_data, batch_size=32, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行训练
test_data = torchvision.datasets.CIFAR10(root="./data", train=False, download=False,  # 导入CIFAR10数据集的测试集
                                         transform=trans)
train_size = len(train_data)  # 训练集的长度
test_size = len(test_data)  # 测试集的长度
print(train_size)   #输出训练集长度看一下,相当于看看有几张图片
print(test_size)    #输出测试集长度看一下,相当于看看有几张图片
testdata = DataLoader(dataset=test_data, batch_size=32, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行测试
class xiaozhai(nn.Module):  #
    def __init__(self):
        super(xiaozhai, self).__init__()
        self.model = nn.Sequential(   #构造神经网络模型
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  # input[3, 120, 120]  output[48, 55, 55]  卷积层
            nn.ReLU(inplace=True),   #relu激活函数
            nn.MaxPool2d(kernel_size=3, stride=2),  # output[48, 27, 27]  最大池化层
            nn.Conv2d(48, 128, kernel_size=5, padding=2),  # output[128, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),  # output[128, 13, 13]
            nn.Conv2d(128, 192, kernel_size=3, padding=1),  # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),  # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),  # output[128, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),  # output[128, 6, 6]
            nn.Flatten(),  #将神经网络输出的张量拉伸为一个一维度的张量
            nn.Dropout(p=0.5),  #dropout层,随机扔掉一部分神经元,防止模型过拟合
            nn.Linear(512, 2048),   #全连接层,最后输出的张量为512维的 ,然后全连接层2048层
            nn.ReLU(inplace=True),    #Relu激活函数进行激活
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, 10),  #全连接最后的输出代表数据分类的种类
        )
    def forward(self, x):
        x = self.model(x)       #x为model的输入,然后输出结果
        return x
alexnet1 = xiaozhai()   #将模型命名为alexnet1
print(alexnet1)  #输出模型结构
test1 = torch.ones(64, 3, 120, 120)  # 测试一下输出的形状大小 输入一个64,3,120,120的向量
test1 = alexnet1(test1)    #将向量打入神经网络进行测试
print(test1.shape)  #查看输出的结果
epoch = 10  # 迭代次数即训练次数
learning = 0.0001  # 学习率
optimizer = torch.optim.Adam(alexnet1.parameters(), lr=learning)  # 使用Adam优化器-写论文的话可以具体查一下这个优化器的原理
loss = nn.CrossEntropyLoss()  # 损失计算方式,交叉熵损失函数
train_loss_all = []  # 存放训练集损失的数组
train_accur_all = []  # 存放训练集准确率的数组
test_loss_all = []  # 存放测试集损失的数组
test_accur_all = []  # 存放测试集准确率的数组
for i in range(epoch):  #开始迭代
    train_loss = 0   #训练集的损失初始设为0
    train_num = 0.0   #
    train_accuracy = 0.0  #训练集的准确率初始设为0
    alexnet1.train()   #将模型设置成 训练模式
    train_bar = tqdm(traindata)  #用于进度条显示,没啥实际用处
    for step, data in enumerate(train_bar):  #开始迭代跑, enumerate这个函数不懂可以查查,将训练集分为 data是序号,data是数据
        img, target = data    #将data 分位 img图片,target标签
        optimizer.zero_grad()  # 清空历史梯度
        outputs = alexnet1(img)  # 将图片打入网络进行训练,outputs是输出的结果
        loss1 = loss(outputs, target)  # 计算神经网络输出的结果outputs与图片真实标签target的差别-这就是我们通常情况下称为的损失
        outputs = torch.argmax(outputs, 1)   #会输出10个值,最大的值就是我们预测的结果 求最大值
        loss1.backward()   #神经网络反向传播
        optimizer.step()  #梯度优化 用上面的abam优化
        train_loss += abs(loss1.item()) * img.size(0)  #将所有损失的绝对值加起来
        accuracy = torch.sum(outputs == target)   #outputs == target的 即使预测正确的,统计预测正确的个数,从而计算准确率
        train_accuracy = train_accuracy + accuracy   #求训练集的准确率
        train_num += img.size(0)  #
    print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i + 1, train_loss / train_num,   #输出训练情况
                                                                train_accuracy / train_num))
    train_loss_all.append(train_loss / train_num)   #将训练的损失放到一个列表里 方便后续画图
    train_accur_all.append(train_accuracy.double().item() / train_num)#训练集的准确率
    test_loss = 0   #同上 测试损失
    test_accuracy = 0.0  #测试准确率
    test_num = 0
    alexnet1.eval()   #将模型调整为测试模型
    with torch.no_grad():  #清空历史梯度,进行测试  与训练最大的区别是测试过程中取消了反向传播
        test_bar = tqdm(testdata)
        for data in test_bar:
            img, target = data
            outputs = alexnet1(img)
            loss2 = loss(outputs, target)
            outputs = torch.argmax(outputs, 1)
            test_loss = test_loss + abs(loss2.item()) * img.size(0)
            accuracy = torch.sum(outputs == target)
            test_accuracy = test_accuracy + accuracy
            test_num += img.size(0)
    print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
    test_loss_all.append(test_loss / test_num)
    test_accur_all.append(test_accuracy.double().item() / test_num)
#下面的是画图过程,将上述存放的列表  画出来即可
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(epoch), train_loss_all,
         "ro-", label="Train loss")
plt.plot(range(epoch), test_loss_all,
         "bs-", label="test loss")
plt.legend()
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.subplot(1, 2, 2)
plt.plot(range(epoch), train_accur_all,
         "ro-", label="Train accur")
plt.plot(range(epoch), test_accur_all,
         "bs-", label="test accur")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.legend()
plt.show()
torch.save(alexnet1, "xiaozhai.pth")
print("模型已保存")
相关文章
|
1天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
20 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
3月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
869 0
|
17天前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
4月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
5月前
|
机器学习/深度学习 安全 网络协议
网络安全公开数据集Maple-IDS,恶意流量检测数据集开放使用!
【8月更文挑战第29天】Maple-IDS 是东北林业大学网络安全实验室发布的网络入侵检测评估数据集,旨在提升异常基础入侵检测和预防系统的性能与可靠性。该数据集包含多种最新攻击类型,如 DDoS 和 N-day 漏洞,覆盖多种服务和网络行为,兼容 CIC-IDS 格式,便于直接使用或生成 csv 文件,适用于多种现代协议。
249 0
|
19天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
59 17
|
29天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
30天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
49 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
61 10