【面试必备】——快速排序算法

简介: 【面试必备】——快速排序算法

快速排序介绍


快速排序使用的是分治策略

它的基本思想:选择一个基数,通过一趟排序将要排序的数据分隔成 独立的两部分;其中一部分的所有 数据比另外一部分的所有数据都要小。 然后,按照此方法对这两部分数据分别就行快速排序,整个过程可以递归进行,以此达到整个数据变成有序序列


快速排序的流程


1)选择一个基准值(一般就采用第一个数)

2)将所有比基准值小的数 移动到基准值前面,所有比基准值大的数移动到基准值后面(相同的数据可以放在任何一边);在这个分区退出以后,该基准就处在数列的中间位置

3)采用递归方式,将基准值前面的序列 和 基准值后面的序列 进行排序


图文流程介绍


下面以数列a={30,40,60,10,20,50}为例,演示它的快速排序过程(如下图)。


fdc760798fdb4f00558dc3662a2d9a24.jpg


上图只是给出了第1趟快速排序的流程。在第1趟中,设置x=a[i],即x=30。

1) 从"右 --> 左"查找小于x的数:找到满足条件的数a[j]=20,此时j=4;然后将a[j]赋值a[i],此时i=0;接着从左往右遍历。

2) 从"左 --> 右"查找大于x的数:找到满足条件的数a[i]=40,此时i=1;然后将a[i]赋值a[j],此时j=4;接着从右往左遍历。

3) 从"右 --> 左"查找小于x的数:找到满足条件的数a[j]=10,此时j=3;然后将a[j]赋值a[i],此时i=1;接着从左往右遍历。

4) 从"左 --> 右"查找大于x的数:找到满足条件的数a[i]=60,此时i=2;然后将a[i]赋值a[j],此时j=3;接着从右往左遍历。

5) 从"右 --> 左"查找小于x的数:没有找到满足条件的数。当i>=j时,停止查找;然后将x赋值给a[i]。此趟遍历结束!


按照同样的方法,对子数列进行递归遍历。最后得到有序数组!


代码实现:


public static void quickSort(int[] array,int low,int high){
        if (low <high){
            int index = getIndex(array, low, high);
            quickSort(array,low,index -1);
            quickSort(array,index +1,high);
        }
    }
    public static int getIndex(int[] array,int i,int j){
        int x = array[i];
        while (i < j){
            //从右向左 寻找小于x 的值
            while (i < j && array[j] >= x){
                j--;
            }
            array[i] = array[j];
            //从右向左 寻找大于x 的值
            while (i <j && array[i] <= x){
                i ++;
            }
            array[j] = array[i];
        }
        array[i] = x;
        return i;
    }
    public static void main(String[] args) {
        int[] arr = { 49, 38, 65, 97, 23, 22, 76, 1, 5, 8, 2, 0, -1, 22 };
        quickSort(arr, 0, arr.length - 1);
        System.out.println("排序后:");
        for (int i : arr) {
            System.out.println(i);
        }
    }


目录
相关文章
|
2月前
|
搜索推荐 C语言
【排序算法】快速排序升级版--三路快排详解 + 实现(c语言)
本文介绍了快速排序的升级版——三路快排。传统快速排序在处理大量相同元素时效率较低,而三路快排通过将数组分为三部分(小于、等于、大于基准值)来优化这一问题。文章详细讲解了三路快排的实现步骤,并提供了完整的代码示例。
62 4
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
128 61
|
5月前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
5月前
|
算法 Go
[go 面试] 雪花算法与分布式ID生成
[go 面试] 雪花算法与分布式ID生成
|
3月前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩分享分库分表的基因算法设计,涵盖分片键选择、水平拆分策略及基因法优化查询效率等内容,助力面试者应对大厂技术面试,提高架构设计能力。
美团面试:百亿级分片,如何设计基因算法?
|
3月前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩在读者群中分享了关于分库分表的基因算法设计,旨在帮助大家应对一线互联网企业的面试题。文章详细介绍了分库分表的背景、分片键的设计目标和建议,以及基因法的具体应用和优缺点。通过系统化的梳理,帮助读者提升架构、设计和开发水平,顺利通过面试。
美团面试:百亿级分片,如何设计基因算法?
|
3月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
50 1
|
3月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
98 2
|
3月前
|
搜索推荐 Java Go
深入了解快速排序算法
深入了解快速排序算法
68 2
|
3月前
|
存储 搜索推荐 算法
【排序算法(二)】——冒泡排序、快速排序和归并排序—>深层解析
【排序算法(二)】——冒泡排序、快速排序和归并排序—>深层解析

热门文章

最新文章