开发者社区> baphsqca3imha> 正文

【视频】云原生数据仓库 Analyticdb MYSQL 版-解析与实践-3|学习笔记(四)

简介: 快速学习【视频】云原生数据仓库 Analyticdb MYSQL 版-解析与实践-3
+关注继续查看

开发者学堂课程【数据仓库 ACP 认证课程【视频】云原生数据仓库 Analyticdb MYSQL 版-解析与实践-3】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/928/detail/14625


【视频】云原生数据仓库 Analyticdb MYSQL 版-解析与实践-3


3.删除数据/分区/表

AnalyticDB for MySQL提供多种数据删除方式,主要语句为DELETE与TRUNCATE。推荐策略为∶

数据删除频率低、基于主键为条件的删除,可通过DELETE FROM WHERE PK='xx'删除数据。

数据删除频率低、基于任意条件的删除,可通过DELETE删除数据。

如果数据删除频率低一般都用DELETE完成,删除大量数据可以通过TRUNCATE完成,并且TRUNCATE可以删除表中某一分区。

通过TRUNCATE TABLE db_name.table_name PARTITION partition_name册除指定二级分区。

通过TRUNCATE TABLE db_name.table_name删除指定表(包括所有二级分区)数据。

4.批量导入数据

AnalyticDB for MySQL支持多种数据源,实现数据导入导出。批量导入适用于大数据量导入的场景,导入过程中可以查询旧数据,导入操作完成后一键切换新数据。导入失败时,支持回滚新数据,不影响查询旧数据。

从大数据系统、大存储环境导入数据,采用INSERT OVERWRITE INTO SELECT方式处理,如从MaxCompute、OSS导入数据到AnalyticDB for MySQL;

批量导入单个表时,导入任务会在系统中串行执行;批量导入多个表时,导入任务会在系统中并行执行,默认并行执行2个任务;

1. 实时导入数据

AnalyticDB for MySQL实时导入适用于小数据量导入的场景。

从业务系统实时导入数据时采用INSERTINTO SELECT FROM,把一个表的数据导入另一个表中。

实时导入任务使用AnalyticDB for MySQL中的资源,如果查询数据期间需要导入数据,建议在QPS(Query Per Second,每秒查询率)较低时进行导入操作。导入会耗费资源,如果在用户查询高峰期导入数据,会对正常业务带来影响。


四、操作演示——创建数据仓库并完成数据同步

把RDS MySQL中一张表的数据导入进ADB MySQL中,实现数据导入。

过程分为6个步骤:

1. 在ADB MySQL创建高权限账号

2. 创建数据库

3创建RDS MySQL外表

4.创建AnalyticDB MySQL表

5.转储RDS MySQL的数据到AnalyticDB MySQL中

6.导入数据验证

实验以ADS官方文档进行操作。通过已经建好的ADS MySQL集群以及RDS实例,将数据从RDS中导入进ADS MySQL中。RDS MySQL实例需与AnalyticDB MySQL集群在同一个VPC下。

image.png为了保证AnalyticDB MySQL能访问RDS,需要将RDS设置白名单。默认白名单为1.27.0.1,表示禁止所有地址访问。复制专有网络的地址后修改RDS白名单

 image.png

image.pngRDS数据库创建账号登录DMS。使用root创建数据库账号,获取最高权限。设置密码。

image.png访问数据库在数据库连接中获取地址,获取地址后创建外部表可以用到。

此时需要创建两个表,一个是adb数据局的表,一个是外部表,通过外部表来实现数据的导入导出。首先需要登录到集群当中,创建账号,创建一个最高权限的账号,名称为root,同时设置密码。

image.png此时对于adb mysql集群来说,如果想要通过外表的方式导入数据,需要打开网络,然后此时可以连接集群,在集群中创建对应数据库及web的映射表。

image.png默认数据库有两个,此时需要创建一个自己的数据库,命名为adb.demo,此时可以访问它,在adb当中再创建一张外部表,创建语句为:

CREATE TABLE IF NOT EXISTS goods_external_table (

goods_id bigint(20) NOT NULL,

price double NOT NULL, class bigint(20) NOT NULL,

name varchar(32) NOT NULL,

update_time timestamp,

PRIMARY KEY (goods_id)

)

ENGINE='mysql' TABLE_PROPERTIES='{

"url":"jdbc:mysql://rm-bp1925ru5x6pzt2m3.mysql.rds.aliyuncs.com.3306/test_adb",

"tablename":"goods",

"username":"root",

 "password":"zhou_123456"

}';

此时已经完成了外部表的创建,此时需要在adb mysql当中创建自己的表,代码如下:

CREATE TABLE IF NOT EXISTS mysql_import_test (

goods_id bigint(20) NOT NULL,

price double NOT NULL,

class bigint(20) NOT NULL,

name varchar(32) NOT NULL,

update_time timestamp, PRIMARY KEY (goods_id)

)

 DISTRIBUTED BY HASH(goods_id);

此时有了外部表和一个adb的表,此时可以通过insert来完成数据的导入导出,此时执行代码如下:

Insert inte mysql_import_test select * from good_external_table;//导入操作

此时执行,可以看到执行一条语句成功,此时打开表,可以看到已经显示。

image.png此时完成了一次数据导入的过程。把rds mysql的数据导入到了adb mysql当中。

此时案例演示结束。

 

五、试题

1. 在AnalyticDB MySQL中,_____尽可能需要将Join的字段作为分布键。例如订单表和用户表通过user_id做join,这两张表都可用user_id做分布。

A,.本地化原则

B. 均匀性原则

C. 分布式原则

D. 复制原则

解析:

A,此种方式可以保证join在本节点完成,不需要做数据的传输,又例如提高性能。

2. 在AnalyticDB MySQL版中,冷数据指的是访问频次较低的数据,采用______存储,满足存储空间的需求。

A. SSD

B. HDD

C. SSHD

D. SHDD

解析:

B,AnalyticDB MySQL一个显著的特征是实现了冷热数据分层,在创建表时,可以指定表是以热、冷还是温数据存储。热数据是存储在SSD(准确的说是ESSD)冷数据是存在OSS。

3. 在AnalyticDB MySQL版中,为什么需要全量同步?

A. 源库历史数据的binlog可能已经删除

B. 开启同步钱源表中已有数据,必须通过全量数据同步来同步

C. 全量同步可以并行拉取和同步,大量历史数据的同步性能较好

D. AnalyticDB MySQL端的表结构需要全量同步来创建。

解析:

AC,源库历史数据的binlog可能已经删除,此时无法通过日志触放的方式来完成数据的导入,只能通过全量方式来实现。同时,全量同步根据主键来进行划分,划分之后每一部分数据可以并行来处理,具有较好的性能。

4. 在AnalyticDB MySQL版中,下列有关查询优化手段说法正确的是_______。

A. 查询过滤条件中指定分部间或分区建可以进行分区裁剪,减少扫描数据量。

B. 过滤条件中的列确保创建索引,才能支持条件下推

C. 对于筛选率比较低的过滤条件,可以指定列no-index进行调选

D. 聚集索引可以建多个,比如既要按照卖家id频繁访问,又要按照品牌id频繁访问,那可以建2个聚集索引

解析:

ABC,一个表上只能创建一个聚集索引,因为聚集索引会造成数据重分布,如果有多个聚集索引,数据不知按哪个进行分布。


六、回顾与总结

image.png

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
FC -第一课-《从云计算到云原生再到 Serverless 架构》|学习笔记
快速学习 FC -第一课-《从云计算到云原生再到 Serverless 架构》
88 0
云原生数仓 ADB PG 产品和架构介绍视频(二)| 学习笔记
快速学习云原生数仓 ADB PG 产品和架构介绍视频
110 0
serverless学习笔记: 解读云原生的 2022 0x2 产业落地篇
serverless学习笔记: 解读云原生的 2022 0x2 产业落地篇
30 0
serverless学习笔记: 解读云原生的 2022 0x1
serverless学习笔记: 解读云原生的 2022 0x1
44 0
QCon 2022·上海站 | 学习笔记4: 云原生 CloudIDE 技术与架构
QCon 2022·上海站 | 学习笔记4: 云原生 CloudIDE 技术与架构
69 0
云开发平台快速开发部署云原生应用| 学习笔记
快速学习云开发平台快速开发部署云原生应用。
39 0
从开源技术 KubeVela 谈起:云原生应用交付会怎样发展|学习笔记(三)
快速学习从开源技术 KubeVela 谈起:云原生应用交付会怎样发展。
1667 0
[视频]云原生数据仓库 AnalyticDB PostgreSQL 版解析与实践(上)|学习笔记(四)
快速学习[视频]云原生数据仓库 AnalyticDB PostgreSQL 版解析与实践(上)
64 0
微服务用户为什么要选择云原生网关?|学习笔记(二)
快速学习微服务用户为什么要选择云原生网关?
131 0
【视频】云原生数据仓库 AnalyticDB PG 解析与实践(下)|学习笔记(四)
快速学习【视频】云原生数据仓库 AnalyticDB PG 解析与实践(下)
79 0
+关注
baphsqca3imha
文章
问答
视频
来源圈子
更多
技术图谱:由专家组参与技术图谱的绘制与编写,知识与实践的结合让开发者们掌握学习路线与逻辑,快速提升技能 电子书:电子书由阿里内外专家打造,供开发者们下载学习,更与课程相结合,使用户更易理解掌握课程内容 训练营:学习训练营 深入浅出,专家授课,带领开发者们快速上云 精品课程:汇集知识碎片,解决技术难题,体系化学习场景,深入浅出,易于理解 技能自测:提供免费测试,摸底自查 体验实验室:学完即练,云资源免费使用
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
DTCC 2022大会集锦《云原生一站式数据库技术与实践》
立即下载
云原生架构容器&微服务优秀案例集
立即下载
云原生网络数据面可观测性最佳实践
立即下载