PolarDB-X开源分布式数据库在韵达科技的应用实践

本文涉及的产品
RDS MySQL DuckDB 分析主实例,基础系列 4核8GB
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
简介: 本文整理自韵达科技业务中台总监李波涛,在 2022 阿里巴巴开源开放周上的分享。

01背景:企业介绍 业务诉求

1.JPG

韵达主要面向国内外提供快递、快运、供应链、仓储服务等,目前拥有 4 万多家快递服务网点,3000多家快运服务网点,200多家加盟商,以及 100 多家分拣中心,其中包括 4200 条快递干线,1000多条快运干线,150家城市配送站,业务覆盖了 100 多家重点城市,遍布全球 30 万个国家和地区,拥有 200 万平米仓储面积,从业人员 30 多万。

2.JPG

韵达每日订单量高达几千万,每个订单有多种标签信息,因此数据量巨大。其中上游业务方有各大电商平台、订单中心、大客户、智橙网、财务中心、店配团、物流团等。


打标平台主要提供了订单标签基础服务、查询统计服务、消息推送、 CSV 文件推送、订单标签处理等。其中数据存储是核心业务,数据量较大,而且是高并发访问场景。数据存储涉及到 Kafka、 CSV、Redis、MySQL 分库分表。


下游主要为业务赋能,有韵图、智能外联、大掌柜、数据中台、结算团、韵达超市、揽派系统等一共 30 多个系统。


02应用实践:架构升级 核心能力

3.JPG

韵达原先的业务架构存在较多痛点:

  1. 数据无法充分发挥业务价值:传统的分库分表方案缺少数据全局视角,对复杂查询的限制较多,需要人工进行处理。
  2. 历史数据清理繁琐:数据并不需要长期存储,对于业务场景而言一般只需存储 1年。但因为分表较多,数据清理较麻烦,同时为了避免对在线业务产生影响,经常需要在业务低峰期比如凌晨,与 DBA 团队合作对历史数据做手动清理。
  3. 随着业务上升导致性能衰减:数据增加以后查询能力下降。另外,计算存储资源固定,难以扩容。


因此,韵达采用了阿里云开源PolarDB-X云原生分布式数据库对业务架构进行了升级,使架构性能得到了极大的提升:

  1. 运营成本降低:支持灵活设置历史数据的存储周期,可以降低存储成本。透明分布式使得使用、运维方面的成本也得以下降。高兼容 MySQL 语法对开发团队而言,学习成本也得到了降低。
  2. 提高弹性扩展能力:计算存储分离架构提供了弹性能力,可随时扩缩容,资源可以按需分配,提高了资源利用率。
  3. 高可用能力提升:引入了强一致协议,克服了主备脑裂问题。另外,多副本技术的加持使得数据更加安全可靠。

4.JPG

上图为升级后的基于分布式数据库的业务架构。与老架构的主要差别在于,将原先基于 MySQL 的人工分库分表使用 PolarDB-X 进行了替换,架构上并未有大调整。


此外,开发团队并不需要理解 CN 节点,也不需要与CN节点打交道,他们看到的只是一个 PolarDB-X 数据库,可以理解为一个大型的MySQL实例,不存在额外的学习成本。

5.JPG

PolarDB-X 提供了两种数据库模式,分别是 Auto模式和DRDS模式。官方推荐使用Auto模式,它具有较好的功能特性,我们也采用了该模式。


Auto模式分区灵活,支持自动、手动分区,单机DDL语法无需改动,可以直接在 PolarDB-X 上使用。高度兼容了 MySQL ,无需额外的学习成本。支持分区级分裂合并,解决了数据热点问题。


Auto模式下的数据库建表语法与MySQL的建表语法完全一致,无需指定分区定义,自动采用 Primary Key 做分区,非常方便。另外,PolarDB-X支持多种表类型,比如传统单表、广播表、分区表,且可以通过简单 DDL 语句进行灵活的转换,比如分区表通过partition-by即可做哈希分区,可通过pratition参数指定分区数,可以创建 broadcast 广播表,也可以通过outtable将单表转换为分区表,非常方便快捷。

6.JPG

PolarDB-X也提供了数据生命周期管理。


通过Local Partition By Range(create_time)指定TTL表的物理时间分区列,在物理表上的数据会以此列做时间分区。可以通过 startwith 指定初始时间分区, intervial month 意为指定数据分区间隔为一个月,也可以按天或者按年进行分区。Expire after 指每个分区 12 个月会自动清理,清理工作不再需要开发与运维在凌晨手动完成,Pre allocate 可以指定提前创建分区的数量。


TTL在 PolarDB-X 后台通过定时任务来自动处理,节省了开发与运维的成本。

7.JPG

韵达订单打标项目为双活部署,每天订单打标数据量2亿+,接口查询量8000 多万。目前标签分类有 80 多种,随着业务发展和用户需求,标签分类可轻松扩展。赋能30+业务应用,提供了 API 查询、统计分析、消息推送、CSV等。


数据进行了温热分级存储,其中 Redis 存储三个月数据量,PolarDB-X存储一年的数据量。有些数据除了统计分析用途以外,还有财务对账等回溯需求,因此会被导入 PolarDB-X,以便进行方便快捷地查询。因为数据量较大,我们采用 ProtoBuf 对数据进行了压缩。

8.JPG

PolarDB-X 为韵达订单打标项目带来了诸多好处:

  1. 不再需要人工进行分库分表,可以通过创建来全局二级索引对打标数据进行灵活统计处理,快速满足业务方面的需求。
  2. 可以自动清理过期数据,释放空间,提高数据库操作效率,不再需要人工干预。
  3. 支持水平与纵向扩缩容,可以轻松应大促场景。
  4. PolarDB-X 兼容 MySQL 协议,降低开发人员的学习曲线,可快速从此前的人工分库分表方案迁移到PolarDB-X数据库。
  5. 支持 online schema change ,添加二级索引不锁表。
  6. 多副本数据备份方案,保证了数据安全性。


03未来展望:社区贡献 领域探索

9.JPG

PolarDB-X 提供了很多优秀的功能特性,在韵达的很多场景里可以进行推广使用。韵达存在大量高并发、海量数据存储的业务场景,因此,后续会在韵达公司内部进一步做 PolarDB-X 的推广使用。


另外,也会进一步在HTAP领域进行探索。PolarDB-X 提供了 TP 和 AP 的处理能力,因此我们计划使用PolarDB-X替换原先 MySQL +Elasticsearch提供的能力。同时,也会将PolarDB-X与韵达已有的周边生态进行融合。


社区建设方面,PolarDB-X官方推荐部署在K8s平台上,提供了开源的数据库,也提供了开源的监控能力。后续韵达将基于Prometheus与 Grafana 做监控能力的进一步提升,比如与公司金融平台、钉钉等打通,及时了解系统运行的健康状况。


最后,韵达科技将持续在社区分享基于 PolarDB-X 开源的实战经验。


 / End /  

相关文章
|
4月前
|
人工智能 安全 Java
分布式 Multi Agent 安全高可用探索与实践
在人工智能加速发展的今天,AI Agent 正在成为推动“人工智能+”战略落地的核心引擎。无论是技术趋势还是政策导向,都预示着一场深刻的变革正在发生。如果你也在探索 Agent 的应用场景,欢迎关注 AgentScope 项目,或尝试使用阿里云 MSE + Higress + Nacos 构建属于你的 AI 原生应用。一起,走进智能体的新世界。
1089 68
|
7月前
|
关系型数据库 MySQL 分布式数据库
安全可靠的PolarDB V2.0 (兼容MySQL)产品能力及应用场景
PolarDB分布式轻量版采用软件输出方式,能够部署在您的自主环境中。PolarDB分布式轻量版保留并承载了云原生数据库PolarDB分布式版技术团队深厚的内核优化成果,在保持高性能的同时,显著降低成本。
666 140
|
4月前
|
关系型数据库 Apache 微服务
《聊聊分布式》分布式系统基石:深入理解CAP理论及其工程实践
CAP理论指出分布式系统中一致性、可用性、分区容错性三者不可兼得,必须根据业务需求进行权衡。实际应用中,不同场景选择不同策略:金融系统重一致(CP),社交应用重可用(AP),内网系统可选CA。现代架构更趋向动态调整与混合策略,灵活应对复杂需求。
|
6月前
|
数据采集 消息中间件 监控
单机与分布式:社交媒体热点采集的实践经验
在舆情监控与数据分析中,单机脚本适合小规模采集如微博热榜,而小红书等大规模、高时效性需求则需分布式架构。通过Redis队列、代理IP与多节点协作,可提升采集效率与稳定性,适应数据规模与变化速度。架构选择应根据实际需求,兼顾扩展性与维护成本。
183 2
|
5月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
5月前
|
存储 弹性计算 Cloud Native
云原生数据库的演进与应用实践
随着企业业务扩展,传统数据库难以应对高并发与弹性需求。云原生数据库应运而生,具备计算存储分离、弹性伸缩、高可用等核心特性,广泛应用于电商、金融、物联网等场景。阿里云PolarDB、Lindorm等产品已形成完善生态,助力企业高效处理数据。未来,AI驱动、Serverless与多云兼容将推动其进一步发展。
271 8
|
7月前
|
人工智能 关系型数据库 分布式数据库
PolarDB Supabase 助力快速构建现代应用
简介:本文介绍了在AI时代背景下,如何通过阿里云瑶池推出的全托管Supabase服务快速构建现代应用。该服务基于开源Supabase与PolarDB-PG数据库,提供一站式后端解决方案,涵盖实时数据库、身份认证、文件存储及AI能力,助力开发者高效迭代业务,降低运维复杂度。适用于协作类应用、SaaS平台、移动开发等多种场景。
|
8月前
|
分布式计算 Java 大数据
Java 大视界 —— 基于 Java 的大数据分布式计算在气象数据处理与天气预报中的应用进展(176)
本文围绕基于 Java 的大数据分布式计算在气象数据处理与天气预报中的应用展开,剖析行业现状与挑战,阐释技术原理,介绍其在数据处理及天气预报中的具体应用,并结合实际案例展示实施效果。
|
安全 druid Java
Seata 1.8.0 正式发布,支持达梦和 PolarDB-X 数据库
Seata 1.8.0 正式发布,支持达梦和 PolarDB-X 数据库
1528 94
Seata 1.8.0 正式发布,支持达梦和 PolarDB-X 数据库
|
存储 DataWorks 监控
DataWorks,一个 polar db 有上万个数据库,解决方案
DataWorks,一个 polar db 有上万个数据库,解决方案

相关产品

  • 云原生分布式数据库 PolarDB-X
  • 云原生数据库 PolarDB