《Python数据分析与挖掘实战》一导读

简介: 总的来说,随着云时代的来临,大数据技术将具有越来越重要的战略意义。大数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的


c50feb8e61b0b2f0b36785edfdd4621677898cdf

前 言

为什么要写这本书
LinkedIn对全球超过3.3亿用户的工作经历和技能进行分析后得出,目前最炙手可热的25项技能中,数据挖掘排名第一。那么数据挖掘是什么?
数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。数据挖掘有助于企业发现业务的趋势,揭示已知的事实,预测未知的结果,因此“数据挖掘”已成为企业保持竞争力的必要方法。
但跟国外相比,由于我国信息化程度不太高,企业内部信息不完整,零售业、银行、保险和证券等对数据挖掘的应用并不理想。但随着市场竞争的加剧,各行业对数据挖掘技术的需求越来越强烈,可以预计,未来几年各行业的数据分析应用一定会从传统的统计分析发展到大规模数据挖掘应用。在大数据时代,数据过剩、人才短缺,数据挖掘专业人才的培养又需要专业知识和职业经验积累。本书注重数据挖掘理论与项目案例实践相结合,可以让读者获得真实的数据挖掘学习与实践环境,更快、更好地学习数据挖掘知识与积累职业经验。
总的来说,随着云时代的来临,大数据技术将具有越来越重要的战略意义。大数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的

目 录

第1章 数据挖掘基础
1.1 某知名连锁餐饮企业的困惑
1.2 从餐饮服务到数据挖掘
1.3 数据挖掘的基本任务
1.4 数据挖掘建模过程
1.5 常用的数据挖掘建模工具
1.6 小结
第2章 Python数据分析简介
2.1 搭建Python开发平台
2.2 Python使用入门
2.3 Python数据分析工具
2.4 配套资源使用设置
2.5 小结
第3章 数据探索
3.1 数据质量分析
3.2 数据特征分析
3.3 Python主要数据探索函数
3.4 小结
第4章 数据预处理
4.1 数据清洗
4.1.1 缺失值处理
4.1.2 异常值处理
4.2 数据集成
4.2.1 实体识别
4.2.2 冗余属性识别
4.3 数据变换
4.3.1 简单函数变换
4.3.2 规范化
4.3.3 连续属性离散化
4.3.4 属性构造
4.3.5 小波变换
4.4 数据规约
4.4.1 属性规约
4.4.2 数值规约
4.5 Python主要数据预处理函数
4.6 小结
第5章 挖掘建模
5.1 分类与预测
5.1.1 实现过程
5.1.2 常用的分类与预测算法
5.1.3 回归分析
5.1.4 决策树
5.1.5 人工神经网络
5.1.6 分类与预测算法评价
5.1.7 Python分类预测模型特点
5.2 聚类分析
5.2.1 常用聚类分析算法
5.2.2 K-Means聚类算法
5.2.3 聚类分析算法评价
5.2.4 Python主要聚类分析算法
5.3 关联规则
5.3.1 常用关联规则算法
5.3.2 Apriori算法
5.4 时序模式
5.4.1 时间序列算法
5.4.2 时间序列的预处理
5.4.3 平稳时间序列分析
5.4.4 非平稳时间序列分析
5.4.5 Python主要时序模式算法
5.5 离群点检测
5.5.1 离群点检测方法
5.5.2 基于模型的离群点检测方法
5.5.3 基于聚类的离群点检测方法
5.6 小结

相关文章
|
3天前
|
Python
百度搜索:蓝易云【yaml在python中实战】
运行以上代码,会将data字典的内容写入名为"data.yaml"的YAML文件,并从该文件中读取数据并打印出来。在实际应用中,你可以根据需要使用PyYAML库来处理复杂的YAML数据,如配置文件、数据序列化等。 买CN2云服务器,免备案服务器,高防服务器,就选蓝易云。百度搜索:蓝易云
81 1
|
3天前
|
数据采集 数据挖掘 API
主流电商平台数据采集API接口|【Python爬虫+数据分析】采集电商平台数据信息采集
随着电商平台的兴起,越来越多的人开始在网上购物。而对于电商平台来说,商品信息、价格、评论等数据是非常重要的。因此,抓取电商平台的商品信息、价格、评论等数据成为了一项非常有价值的工作。本文将介绍如何使用Python编写爬虫程序,抓取电商平台的商品信息、价格、评论等数据。 当然,如果是电商企业,跨境电商企业,ERP系统搭建,我们经常需要采集的平台多,数据量大,要求数据稳定供应,有并发需求,那就需要通过接入电商API数据采集接口,封装好的数据采集接口更方便稳定高效数据采集。
|
1天前
|
数据采集 存储 开发者
Python爬虫实战:打造高效数据采集工具
本文将介绍如何利用Python编写一个高效的网络爬虫,实现对特定网站数据的快速抓取与处理,帮助开发者更好地应对大规模数据采集的需求。
|
2天前
|
机器学习/深度学习 数据可视化 数据挖掘
Python数据分析:从入门到实践
Python数据分析:从入门到实践
|
2天前
|
安全 Java 开发者
Python多线程编程实战:提高程序执行效率的策略
Python多线程编程实战:提高程序执行效率的策略
|
2天前
|
测试技术 API Python
Python自动化测试:unittest与pytest的实战技巧
Python自动化测试:unittest与pytest的实战技巧
|
2天前
|
数据采集 存储 数据可视化
Python数据分析从入门到实践
Python数据分析从入门到实践
|
2天前
|
数据采集 存储 架构师
上进计划 | Python爬虫经典实战项目——电商数据爬取!
在如今这个网购风云从不间歇的时代,购物狂欢持续不断,一年一度的“6.18年中大促”、“11.11购物节”等等成为了网购电商平台的盛宴。在买买买的同时,“如何省钱?”成为了大家最关心的问题。 比价、返利、优惠券都是消费者在网购时的刚需,但在这些“优惠”背后已产生灰色地带。
|
2天前
|
数据采集 XML 数据处理
Python爬虫实战:利用BeautifulSoup解析网页数据
本文将介绍如何利用Python中的BeautifulSoup库来解析网页数据,帮助读者更好地开发爬虫程序,实现自动化数据采集与处理。
|
2天前
|
数据采集 数据挖掘 大数据
Python 数据分析中的数据清洗技巧与实践
【2月更文挑战第1天】数据分析是当下热门的技术领域之一,而数据清洗作为数据分析过程中至关重要的一环,往往被人们忽视。本文将深入探讨在 Python 环境下进行数据清洗的关键技巧与实际操作,帮助读者提升数据分析的效率与准确性。