Python数据分析13

简介: Pillow 是 PIL(Python Imaging Library)的升级版本,适应 Python 3 的更新而诞生,带来了诸多新特性。它采用模块化结构,主要包括:图像功能模块(Image)、图像滤波功能模块(ImageFilter)、图像增强功能模块(ImageEnhance)和图像绘画功能模块(ImageDraw)。Pillow 支持从多种图像格式读取数据,进行处理,并能输出为常见格式,其官网提供了丰富的应用示例供学习参考。

4.Pillow
PIL(Python Imaging Library)作为Python 2的第三方图像处理库,是Pillow的前身。
随着Python3的更新,PIL移植到Python 3中更名为Pillow,且加入了许多新特性。
与OpenCV相同,Pillow也是模块结构,主要包含以下4个模块。
<1>图像功能模块(Image),包含读写图像、图像混合、图像放缩、图像裁切、图像旋转等内容。
<2>图像滤波功能模块(ImageFilter),包含各类图像滤波核。
<3>图像增强功能模块(ImageEnhance),包含色彩增强、亮度增强、对比度增强、清晰度增强等内容。
<4>图像绘画功能模块(ImageDraw),包含绘制几何形状、绘制文字等内容。
同时,利用Pillow中的函数可以从大多数图像格式的文件中读取数据,然后对读取的图像进行处理,最后写入常见的图像格式中。Pillow官网有一些应用例子可供读者查阅参考。

目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
53 2
|
1月前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析:从零开始的指南
【10月更文挑战第9天】使用Python进行数据分析:从零开始的指南
37 1
|
17天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
45 0
|
11天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
27 2
|
18天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
23天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
24 2
|
9天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
9天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
11天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行高效的数据分析
【10月更文挑战第9天】使用Python进行高效的数据分析
22 1