机器学习之一:什么是机器学习?

简介: 机器学习之一:什么是机器学习?

机器学习之一:什么是机器学习?


如果想了解更多的知识,可以去我的机器学习之路 The Road To Machine Learning通道


1. 什么是机器学习?


长期以来众说纷纭,Langley(1996)定义机器学习为:“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。Mitchell(1997)在《Machine Learning》中写道:“机器学习是计算机算法的研究,并通过经验提高其自动进行改善”。Alpaydin(2004)提出自己对机器学习的定义:“机器学习是用数据或以往的经验,来优化计算机程序的性能标准”。Drew Conway在《Machine Learning for Hackers》书中定义:“机器学习就是一套工具和方法,凭借这些工具和方法我们可以从观测到的样本中提炼模式、归纳知识。


换句话说,在特定情境下,我们可以记录研究对象的行为,从中学习,然后对其行为建模,该模型反过来促进我们对该情境有更深入的理解”。麦好在《机器学习实践指南:案例应用解析》中定义:“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径。机器学习的研究方法通常是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统”。


2. 机器学习的发展


真正的机器学习研究起步较晚,它的发展过程大体上可分为以下4个时期:

第一阶段是在20世纪50年代中叶到20世纪60年代中叶,属于热烈时期。

第二阶段是在20世纪60年代中叶至20世纪70年代中叶,被称为机器学习冷静期。

第三阶段是从20世纪70年代中叶至20世纪80年代中叶,称为机器学习复兴期。

最新的阶段起始于1986年。当时,机器学习综合应用了心理学、生物学和神经生理学以及数学、自动化和计算机科学,并形成了机器学习理论基础,同时还结合各种学习方法取长补短,形成集成学习系统。


3. 机器学习比较活跃的领域


1)数据分析和数据挖掘

数据分析与挖掘技术是机器学习算法和数据存取技术的结合,利用机器学习提供的统计分析、知识发现等手段分析海量数据,同时利用数据存取机制实现数据的高效读写。机器学习在数据分析与挖掘领域中拥有无可取代的地位,2012年Hadoop进军机器学习领域就是一个很好的例子。

2)模式识别

语音输入,OCR,手写输入,通讯监控,车牌识别,指纹识别,虹膜识别,脸像识别,小波分析

3)智慧机器,机器人

生产线机器人,人机对话,电脑博弈


4. 机器学习常用软件


1)MATLAB

2)SPSS

3)R

4)PYTHON


5. 具有代表性的算法


1)回归预测及相应的降维技术

线性回归,Logistic回归,主成分分析,因子分析,岭回归,LASSO最小回归系数分析

2)分类器

决策树,朴素贝叶斯,贝叶斯信念网绚,支持向量机,提升分类器准确率的Adaboost和随机森林算法

3)聚类算法

k-means,PCM

4)人工神经网络

模仿生物神经网络结构和功能的数学模型。


每日一句

Having dreams is what makes life tolerable.

有梦想才能忍受现实生活。

相关文章
|
6月前
|
机器学习/深度学习 存储 人工智能
机器学习(二)什么是机器学习
机器学习(二)什么是机器学习
95 0
|
机器学习/深度学习 人工智能 算法
机器学习连载(30)
机器学习连载(30)
71 0
机器学习连载(30)
|
机器学习/深度学习 人工智能 算法
机器学习连载(25)
机器学习连载(25)
63 0
机器学习连载(25)
|
机器学习/深度学习 人工智能 算法
机器学习连载(24)
机器学习连载(24)
58 0
机器学习连载(24)
|
机器学习/深度学习 人工智能 算法
机器学习连载(32)
机器学习连载(32)
48 0
机器学习连载(32)
|
机器学习/深度学习
机器学习连载(9)
机器学习连载(9)
51 0
机器学习连载(9)
|
机器学习/深度学习 人工智能 算法
机器学习连载(37)
机器学习连载(37)
52 0
机器学习连载(37)
|
机器学习/深度学习
机器学习连载(15)
机器学习连载(15)
42 0
机器学习连载(15)
|
存储 机器学习/深度学习 并行计算
【机器学习】文章9
①Numpy的简介 NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。 🚩一个用python实现的科学计算,包括: 1、一个强大的N维数组对象Array; 2、比较成熟的(广播)函数库; 3、用于整合C/C++和Fortran代码的工具包; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算
97 0
【机器学习】文章9
|
机器学习/深度学习 Python
100天搞定机器学习|Day55 最大熵模型
100天搞定机器学习|Day55 最大熵模型
100天搞定机器学习|Day55 最大熵模型