【回归预测-DELM】基于鲸鱼算法改进深度学习极限学习机实现数据回归预测附matlab代码

简介: 【回归预测-DELM】基于鲸鱼算法改进深度学习极限学习机实现数据回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

1.1 鲸鱼算法

基本鲸鱼优化算法是由Mirjalili等从座头鲸的捕食行为中,产生灵感,并加以改进,提出的一种新型元启发式算法。数学模型来源于3种捕食行为:环绕式捕食、螺旋气泡网捕食和随机搜索捕食。

1.1环绕式捕食

WOA算法假设当前最佳鲸群个体位置为最接近目标猎物的位置。这种捕食行为的数学表达式为:

1.2螺旋气泡网捕食

螺旋气泡网捕食行为简化为收缩和螺旋上升,这两种行为同时进行,算法中以概率为选择阈值,决定采用何种方式进行迭代,数学模型如下:

1.3随机搜索捕食

当系数向量的值不在之间,则跳出已经找到的最优个体,重新寻找新的随机个体,其数学模型如下:

1.2  深度极限学习机

人工神经网络的最大缺点是训练时间太长从而限制其实时应用范围,近年来,极限学习机(Extreme Learning Machine, ELM)的提出使得前馈神经网络的训练时间大大缩短,然而当原始数据混杂入大量噪声变量时,或者当输入数据维度非常高时,极限学习机算法的综合性能会受到很大的影响。深度学习算法的核心是特征映射,它能够摒除原始数据中的噪声,并且当向低维度空间进行映射时,能够很好的起到对数据降维的作用,因此我们思考利用深度学习的优势特性来弥补极限学习机的弱势特性从而改善极限学习机的性能。在本文中,首先介绍了基于自编码器的极限学习机(Auto Encode based Extreme Learning Machine, AE-ELM),它使用第一层自编码网络对输入数据进行降维除噪处理,再使用第二层自编码算法确定ELM输入权值以提升ELM有效性,最后使用最小二乘法确定ELM输出层权值。这种方法主要解决数据维度偏高且含有噪声时的情况,最后实验验证了AE-ELM在噪声数据下很好的提升了算法的性能。其次,详细介绍了基于极限学习机的自编码器(Extreme Learning Machine Auto Encode, ELM-AE),它能够对原始特征进行等维度,高维度,及低维度的特征映射,为ELM在超高维度下的应用奠定了基础。

⛄ 部分代码

function X = pinv(A,tol)

%PINV   Pseudoinverse.

%   X = PINV(A) produces a matrix X of the same dimensions

%   as A' so that A*X*A = A, X*A*X = X and A*X and X*A

%   are Hermitian. The computation is based on SVD(A) and any

%   singular values less than a tolerance are treated as zero.

%

%   PINV(A,TOL) treats all singular values of A that are less than TOL as

%   zero. By default, TOL = max(size(A)) * eps(norm(A)).

%

%   Class support for input A:

%      float: double, single

%

%   See also RANK.

 

%   Copyright 1984-2015 The MathWorks, Inc.

A(isnan(A)) = 0;

A(isinf(A)) = 0;

[U,S,V] = svd(A,'econ');

s = diag(S);

if nargin < 2

   tol = max(size(A)) * eps(norm(s,inf));

end

r1 = sum(s > tol)+1;

V(:,r1:end) = [];

U(:,r1:end) = [];

s(r1:end) = [];

s = 1./s(:);

X = (V.*s.')*U';

⛄ 运行结果

⛄ 参考文献

[1]崔兴华, 靳晟, 姚芷馨,等. 基于麻雀搜索算法和广义回归神经网络的玉米产量预测[J]. 数学的实践与认识, 2022, 52(7):9.

[2]马萌萌. 基于深度学习的极限学习机算法研究[D]. 中国海洋大学, 2016.

[3]王彦琦, 张强, 朱刘涛,等. 基于改进鲸鱼优化算法的GBDT回归预测模型[J]. 吉林大学学报:理学版, 2022(002):060.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除

天天Matlab

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,完整matlab代码或者程序定制加qq1575304183。

公众号

     



相关文章
|
14天前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
15天前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
145 18
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
1月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
82 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
2月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
2月前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
3月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
9天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
9天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
1月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。