【深度学习】Tensorflow学习(1)张量与常用函数 2

简介: 【深度学习】Tensorflow学习(1)张量与常用函数

常用函数


强制tensor转换为该数据类型

tf.cast(张量名称,dtype=数据类型)

计算张量维度上元素的最小值

tf.reduce_min(张量名)

计算张量维度上元素的最大值

tf.reduce_max(张量名)
import tensorflow as tf
x1=tf.constant([1.,2.,3.],dtype=tf.float64)
print(x1)
x2=tf.cast(x1,tf.int32)
print(x2)
print(tf.reduce_min(x2),'\n',tf.reduce_max(x2))

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32) 
tf.Tensor(3, shape=(), dtype=int32)

axis

axis:用于指定操作方向

在一个二维张量或数组中,可以通过调整axis等于1或者0控制执行维度

  • axis=0 代表跨行(经度,down)
  • axis=1 代表跨列(维度,across)
  • 不指定axis,则所有元素参与计算

q1.png

计算张量沿着指定维度的平均值
tf.reduce_mean(张量名,axis=操作轴)
计算张量沿着指定维度的和
tf.reduce_sum(张量名,axis=操作轴)
import tensorflow as tf
x=tf.constant([
[1,2,3],
[4,5,6]
])
print(x)
print(tf.reduce_mean(x)) # 计算张量沿着指定维度的平均值 所有元素参与计算
print(tf.reduce_sum(x,axis=1)) #计算张量沿着指定维度的和  跨列操作

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

tf.Tensor(
[[1 2 3]
[4 5 6]], shape=(2, 3), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
tf.Tensor([ 6 15], shape=(2,), dtype=int32)

tf.Variable()

作用:将变量标记为“可训练”

被标记的变量会在反向传播中记录梯度信息。神经网络训练中,常用该函数标记待训练参数

tf.Variable(初始值)
import tensorflow as tf
# 神经网络初始化参数w
w = tf.Variable(tf.random.normal([2,2],mean=0,stddev=1)) # 生成正态分布的随机数 维度为[2,2] 均值为0 标准差为1
# 通过上述操作,就可以在反向传播中 通过梯度下降更新参数w
import tensorflow as tf
w = tf.Variable(tf.random.normal([2,2],mean=0,stddev=1))
print(w)

运行结果

<tf.Variable 'Variable:0' shape=(2, 2) dtype=float32, numpy=
array([[ 0.2049946 ,  0.1968063 ],
    [-0.29070154, -0.02642607]], dtype=float32)>

tensorflow中的数学运算

对应元素的四则运算:tf.add,tf.subtract,tf.multiply,tf.divide(加减乘除)

平方:tf.square

次方:tf.pow

开方:tf.sqrt

矩阵乘:tf.matmul

重要:只有两个维度相同的张量才可以做四则运算

实现两个张量对应元素相加
tf.add(张量1,张量2)
实现两个张量对应元素相减
tf.subtract(张量1,张量2)
实现两个张量对应元素相乘
tf.multiply(张量1,张量2)
实现两个张量对应元素相除
tf.divide(张量1,张量2)
import tensorflow as tf
a = tf.ones([1,3])
b = tf.fill([1,3],3.)
print(a)
print(b)
print(tf.add(a,b))
print(tf.subtract(a,b))
print(tf.multiply(a,b))
print(tf.divide(b,a))

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

tf.Tensor([[1. 1. 1.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
tf.Tensor([[4. 4. 4.]], shape=(1, 3), dtype=float32)
tf.Tensor([[-2. -2. -2.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
计算某个张量的平方
ft.square(张量名)
计算某个张量的N次方
ft.pow(张量名,n次方数)
计算某个张量的开方
ft.sqrt(张量名)
import tensorflow as tf
a = tf.fill([1,3],3.)
print(a)
print(tf.pow(a,3)) # 三次方
print(tf.square(a)) # 平方
print(tf.sqrt(a)) # 开方

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
tf.Tensor([[27. 27. 27.]], shape=(1, 3), dtype=float32)
tf.Tensor([[9. 9. 9.]], shape=(1, 3), dtype=float32)
tf.Tensor([[1.7320508 1.7320508 1.7320508]], shape=(1, 3), dtype=float32)
矩阵乘
tf.matmul(矩阵1,矩阵2)
import tensorflow as tf
a = tf.ones([3,2])
b = tf.fill([2,3],3.)
print(a)
print(b)
print(tf.matmul(a,b))

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

tf.Tensor(
[[1. 1.]
[1. 1.]
[1. 1.]], shape=(3, 2), dtype=float32)
tf.Tensor(
[[3. 3. 3.]
[3. 3. 3.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[6. 6. 6.]
[6. 6. 6.]
[6. 6. 6.]], shape=(3, 3), dtype=float32)

tf.data.Dataset.from_tensor_slices

切分传入张量的第一维度,生成输入 特征/标签 对,构建数据集

data =tf.data.Dataset.from_tensor_slices((输入特征,标签))

Numpy和Tensor格式都可以用该语句读入数据

import tensorflow as tf
features = tf.constant([12, 23, 10, 17])
labels = tf.constant([0, 1, 1, 0])
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
print(dataset)
for element in dataset:
    print(element)

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

<TensorSliceDataset element_spec=(TensorSpec(shape=(), dtype=tf.int32, name=None), TensorSpec(shape=(), dtype=tf.int32, name=None))>
(<tf.Tensor: shape=(), dtype=int32, numpy=12>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)
(<tf.Tensor: shape=(), dtype=int32, numpy=23>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=10>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=17>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)

实现某个函数对指定参数的求导运算

tf.GradientTape

with结构计算过程,gradient求出张量的梯度

with tf.GradientTape() as tape:
  若干个计算过程
grad=tape.gradient(函数,对谁求导)
import tensorflow as tf
with tf.GradientTape() as tape:
    w = tf.Variable(tf.constant(3.0))  # 标记为“可训练”
    loss = tf.pow(w, 2)  # 求w的2次方
  # 损失函数loss 对 参数w 的求导数运算
grad = tape.gradient(loss,w)
 print(grad)

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

tf.Tensor(6.0, shape=(), dtype=float32)

q3.png

枚举 enumerate

enumerate是python的内建函数,它可以遍历每个元素(如列表、元组或者字符串),组合为 索引 元素。常在for循环中使用

enumerate 列表名
import tensorflow as tf
seq = ['one','two','three']
for i,element in enumerate(seq):
  print(i,element)

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

0 one
1 two
2 three

独热编码(one-hot encoding)

在分类问题中,常用独热编码做标签

标记类别:1表示是,0表示非

tf.one_hot()

该函数将待转换数据。转换为one-hot形式的数据输出

tf.one_hot(待转化数据,depth=几分类)
import tensorflow as tf
classes = 3
labels = tf.constant([1,0,2]) # 输入元素的最小值为0,最大值为2
output = tf.one_hot(labels,depth=classes)
print(output)

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

tf.Tensor(
[[0. 1. 0.]
[1. 0. 0.]
[0. 0. 1.]], shape=(3, 3), dtype=float32)

tf.nn.softmax(x)

作用:使输出符合概率分布

q2.png

当n分类的n个输出(y0,y1 …… yn-1)通过softmax()函数

便符合概率分布了。

import tensorflow as tf
y = tf.constant([1.01,2.01,-0.66])
y_pro  =tf.nn.softmax(y)
print("After softmax , y_pro is :",y_pro)

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

After softmax , y_pro is : tf.Tensor([0.25598174 0.6958304  0.0481878 ], shape=(3,), dtype=float32)

assign_sub

作用:常用于参数自更新

  • 赋值操作,更新参数的返回值并返回
  • 调用assign_sub前,先使用tf.Variable定义变量w为可训练(可自更新)
w.assign_sub(w要自减的内容)
import tensorflow as tf
w = tf.Variable(4)
w.assign_sub(1) #  w-=1 即是 w=w-1
print(w)

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>

tf.argmax

作用:返回张量沿指定维度最大值的索引

tf.argmax(张量名,axis=操作轴)
import tensorflow as tf
import numpy as np
test = np.array([[1,2,3],[2,3,4],[5,4,3],[8,7,2]])
print(test)
print(tf.argmax(test,axis=0)) # 返回每一行(经度)最大值的索引
print(tf.argmax(test,axis=1)) # 返回每一行(维度)最大值的索引

python 3.10 tensorflow-gpu 2.8 numpy 1.22.1 | 运行结果

[[1 2 3]
[2 3 4]
[5 4 3]
[8 7 2]]
tf.Tensor([3 3 1], shape=(3,), dtype=int64)
tf.Tensor([2 2 0 0], shape=(4,), dtype=int64)

q1.png



相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
相关文章
|
1天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
关于Tensorflow!目标检测预训练模型的迁移学习
这篇文章主要介绍了使用Tensorflow进行目标检测的迁移学习过程。关于使用Tensorflow进行目标检测模型训练的实战教程,涵盖了从数据准备到模型应用的全过程,特别适合对此领域感兴趣的开发者参考。
13 3
关于Tensorflow!目标检测预训练模型的迁移学习
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
使用TensorFlow进行深度学习入门
【5月更文挑战第11天】本文引导读者入门TensorFlow深度学习,介绍TensorFlow——Google的开源机器学习框架,用于处理各种机器学习问题。内容包括TensorFlow安装(使用pip)、核心概念(张量、计算图和会话)以及构建和训练简单线性回归模型的示例。通过这个例子,读者可掌握TensorFlow的基本操作,包括定义模型、损失函数、优化器以及运行会话。
|
3天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
Python深度学习基于Tensorflow(7)视觉处理基础
Python深度学习基于Tensorflow(7)视觉处理基础
18 2
Python深度学习基于Tensorflow(7)视觉处理基础
|
3天前
|
机器学习/深度学习 算法 TensorFlow
Python深度学习基于Tensorflow(6)神经网络基础
Python深度学习基于Tensorflow(6)神经网络基础
16 2
Python深度学习基于Tensorflow(6)神经网络基础
|
3天前
|
机器学习/深度学习 算法 算法框架/工具
Python深度学习基于Tensorflow(5)机器学习基础
Python深度学习基于Tensorflow(5)机器学习基础
14 2
|
3天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python深度学习基于Tensorflow(4)Tensorflow 数据处理和数据可视化
Python深度学习基于Tensorflow(4)Tensorflow 数据处理和数据可视化
10 3
|
3天前
|
机器学习/深度学习 TensorFlow API
Python深度学习基于Tensorflow(3)Tensorflow 构建模型
Python深度学习基于Tensorflow(3)Tensorflow 构建模型
12 2
|
3天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
Python深度学习基于Tensorflow(2)Tensorflow基础
Python深度学习基于Tensorflow(2)Tensorflow基础
12 3
|
3天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
Python深度学习基于Tensorflow(1)Numpy基础
Python深度学习基于Tensorflow(1)Numpy基础
15 5
|
12天前
|
机器学习/深度学习 数据可视化 TensorFlow
【Python 机器学习专栏】使用 TensorFlow 构建深度学习模型
【4月更文挑战第30天】本文介绍了如何使用 TensorFlow 构建深度学习模型。TensorFlow 是谷歌的开源深度学习框架,具备强大计算能力和灵活编程接口。构建模型涉及数据准备、模型定义、选择损失函数和优化器、训练、评估及模型保存部署。文中以全连接神经网络为例,展示了从数据预处理到模型训练和评估的完整流程。此外,还提到了 TensorFlow 的自动微分、模型可视化和分布式训练等高级特性。通过本文,读者可掌握 TensorFlow 基本用法,为构建高效深度学习模型打下基础。