人工智能应用工程师技能提升系列2、——TensorFlow2——keras高级API训练神经网络模型

简介: 人工智能应用工程师技能提升系列2、——TensorFlow2——keras高级API训练神经网络模型



TensorFlow 2中的Keras概述

TensorFlow 2中的Keras是一个高级深度学习API,它是TensorFlow的一个核心组件。Keras被设计为用户友好、模块化和可扩展的,允许快速构建和训练深度学习模型。

在TensorFlow 2中,Keras被集成作为TensorFlow的一个子模块,这意味着它可以直接利用TensorFlow的强大功能和优化。与独立的Keras库相比,TensorFlow 2中的Keras具有更紧密的集成和更多的功能。

使用TensorFlow 2中的Keras,您可以轻松地定义和训练各种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)和全连接网络。它提供了许多预定义的层、损失函数和优化器,您可以轻松地将它们组合起来构建自定义模型。

此外,TensorFlow 2中的Keras还支持分布式训练,允许您利用多个GPU或TPU来加速模型训练。它还提供了对TensorBoard的可视化支持,使您能够轻松地监视和调试模型的训练过程。

总之,TensorFlow 2中的Keras是一个强大而易于使用的高级深度学习API,它允许您快速构建、训练和调试深度学习模型,并充分利用TensorFlow的功能和优化。

使用keras高级API训练神经网络模型

代码承接:人工智能应用工程师技能提升系列1、——TensorFlow2-CSDN博客

import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据
# 直接获取二维数组·方便索引缩着切分
data = pd.read_csv("tensorflow_test_info.csv").values
# 样本特征·第一列的值
x = data[:, 0]
# 目标值·第二列的值
y = data[:, 1]
# 构造线性模型y=wx+b
# 我们计算分析的是浮点数,所以加上.0
w = tf.Variable(-10.0)
b = tf.Variable(7.0)
def model(x, w, b):
    """模型函数"""
    return w * x + b
# 视图呈现
plt.figure(figsize=(10, 5))
plt.axis([0.1, 0.55, 1, 7])
plt.scatter(x, y)
def loss(predicted_y, target_y):
    """损失函数"""
    return tf.reduce_mean(tf.square(predicted_y - target_y))
learning_rate = 0.2  # 初始学习速率时0.2

正文

这里导包的时候需要注意,使用的是2.1.5版本,不能使用tf.keras来进行操作,需要单独的使用keras来操作。

import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
# 读取数据
# 直接获取二维数组·方便索引缩着切分
data = pd.read_csv("tensorflow_test_info.csv").values
# 样本特征·第一列的值
x = data[:, 0]
# 目标值·第二列的值
y = data[:, 1]
# 构造线性模型y=wx+b
# 我们计算分析的是浮点数,所以加上.0
w = tf.Variable(-10.0)
b = tf.Variable(7.0)
def model(x, w, b):
    """模型函数"""
    return w * x + b
# 视图呈现
plt.figure(figsize=(10, 5))
plt.axis([0.1, 0.55, 1, 7])
plt.scatter(x, y)
def loss(predicted_y, target_y):
    """损失函数"""
    return tf.reduce_mean(tf.square(predicted_y - target_y))
# learning_rate = 0.2  # 初始学习速率时0.2
model_net = Sequential()
model_net.add(Dense(1, input_shape=(1,)))
# 模型编译
model_net.compile(loss='mse', optimizer=keras.optimizers.SGD(learning_rate=0.5))
# 训练500轮
model_net.fit(x, y, verbose=1, epochs=500, validation_split=0.2)

训练轮数500,可以看到对应的损失值。

使用Keras高级API训练神经网络模型的优势包括:

用户友好性:Keras具有非常简洁和直观的API,使得用户能够轻松上手并快速构建和训练神经网络模型。

模块化和可扩展性:Keras的模型是由独立的、完全可配置的模块构成的,这些模块包括神经网络层、损失函数、优化器、初始化方法、激活函数、正则化方法等。这种模块化设计使得Keras具有很好的扩展性,用户可以轻松自定义模块来构建更复杂的模型。

支持多种神经网络结构:Keras支持卷积神经网络、循环神经网络以及两者的组合,使得用户能够轻松应对各种深度学习任务。

在CPU和GPU上无缝运行:Keras模型可以在CPU和GPU上无缝运行,这使得用户能够充分利用硬件资源,提高模型训练速度。

调试和扩展方便:Keras模型定义在Python代码中,这些代码紧凑、易于调试,并且易于扩展。用户可以轻松修改代码来调整模型结构,进行模型调试和扩展。

高度优化的性能:Keras内部采用了高度优化的C/C++代码,使得它能够轻松处理大规模数据集,提高模型训练效率。

社区支持和文档完善:Keras是一个开源项目,拥有庞大的用户社区和完善的文档。这意味着用户可以轻松找到各种教程、示例和解决方案,加快学习速度和提高工作效率。

综上所述,使用Keras高级API训练神经网络模型具有很多优势,包括用户友好性、模块化和可扩展性、支持多种神经网络结构、无缝运行于CPU和GPU、方便调试和扩展、高度优化的性能以及完善的社区支持和文档等。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
19天前
|
人工智能 算法 安全
OpenRouter 推出百万 token 上下文 AI 模型!Quasar Alpha:提供完全免费的 API 服务,同时支持联网搜索和多模态交互
Quasar Alpha 是 OpenRouter 推出的预发布 AI 模型,具备百万级 token 上下文处理能力,在代码生成、指令遵循和低延迟响应方面表现卓越,同时支持联网搜索和多模态交互。
136 1
OpenRouter 推出百万 token 上下文 AI 模型!Quasar Alpha:提供完全免费的 API 服务,同时支持联网搜索和多模态交互
|
1月前
|
人工智能 自然语言处理 API
零门槛,即刻拥有DeepSeek-R1满血版——调用API及部署各尺寸模型
本文介绍了如何利用阿里云技术快速部署和使用DeepSeek系列模型,涵盖满血版API调用和云端部署两种方案。DeepSeek在数学、代码和自然语言处理等复杂任务中表现出色,支持私有化部署和企业级加密,确保数据安全。通过详细的步骤和代码示例,帮助开发者轻松上手,提升工作效率和模型性能。解决方案链接:[阿里云DeepSeek方案](https://www.aliyun.com/solution/tech-solution/deepseek-r1-for-platforms?utm_content=g_1000401616)。
零门槛,即刻拥有DeepSeek-R1满血版——调用API及部署各尺寸模型
|
1月前
|
人工智能 物联网 API
又又又上新啦!魔搭免费模型推理API支持DeepSeek-R1,Qwen2.5-VL,Flux.1 dev及Lora等
又又又上新啦!魔搭免费模型推理API支持DeepSeek-R1,Qwen2.5-VL,Flux.1 dev及Lora等
166 7
|
3月前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
332 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
1月前
|
人工智能 测试技术 API
Ollama本地模型部署+API接口调试超详细指南
本文介绍了如何使用Ollama工具下载并部署AI大模型(如DeepSeek-R1、Llama 3.2等)。首先,访问Ollama的官方GitHub页面下载适合系统的版本并安装。接着,在终端输入`ollama`命令验证安装是否成功。然后,通过命令如`ollama run Llama3.2`下载所需的AI模型。下载完成后,可以在控制台与AI模型进行对话,或通过快捷键`control+d`结束会话。为了更方便地与AI互动,可以安装GUI或Web界面。此外,Ollama还提供了API接口,默认支持API调用,用户可以通过Apifox等工具调试这些API。
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
4月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
536 55
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
599 5
|
5月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
247 3
|
5月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
265 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络

热门文章

最新文章

下一篇
oss创建bucket