人工智能应用工程师技能提升系列1、——TensorFlow2

简介: 人工智能应用工程师技能提升系列1、——TensorFlow2



tensorflow2介绍

这里先说一下选择使用tensorflow2讲解的原因,在对比一下同类型的一个优势。由于我们这个系列的目标是学习,大家使用的都是win系统的电脑,故而这里选择tensorflow2方便得多。当前最新的版本是2.15

官网(偶尔打不开): https://www.tensorflow.org/

中文网站: https://tensorflow.google.cn

可以在学习这个下拉菜单中找到官方给的可成内容,对应的还有API啥的,很方便。

TensorFlow与TensorFlow 2的主要区别体现在以下几个方面:

1. 计算图执行模式:TensorFlow 1.x主要使用静态计算图,需要先构建计算图,然后通过Session执行。而TensorFlow 2.x默认使用Eager Execution(即动态图执行模式),这使得操作更加直观和易于调试,开发效率更高。同时,TensorFlow 2.x也支持通过`tf.function`将动态图代码转化为静态图模式,兼顾运行效率。

2. API简化:相比于TensorFlow 1.x,TensorFlow 2.x删除了许多旧的API,并对一些API进行了合并和简化。例如,TensorFlow 2.x中,Keras被确立为官方的高级API,使得模型的构建和训练更加简洁明了。

3. 兼容性:虽然TensorFlow 2.x进行了许多改进,但它仍然需要考虑与TensorFlow 1.x的兼容性。为此,TensorFlow 2.x提供了一个兼容模块`tf.compat.v1`,使得大部分TensorFlow 1.x的代码可以在TensorFlow 2.x中运行。

总的来说,TensorFlow 2.x在易用性、开发效率和运行效率方面都进行了显著的改进,同时保持了与TensorFlow 1.x的兼容性。这使得开发者可以更方便地进行深度学习相关的工作。所以本课程内容选择的是TensorFlow2进行具体的操作讲解。

tensorflow2优势对比PyTorch

TensorFlow 2与PyTorch是两个流行的深度学习框架,它们都有各自的优势。以下是对TensorFlow 2与PyTorch的优势的详细描述:

TensorFlow 2的优势:

1. 工业级部署:移动端和嵌入式部署: TensorFlow在移动端和嵌入式设备上的部署能力优于PyTorch,对于Android或iOS平台,只需要很小的工作量。

高性能服务器端部署: TensorFlow Serving可以轻松地进行热插拔模型,而不会使服务失效,这在高性能服务器端部署时是一个显著优点。

2. 静态计算图优化:尽管TensorFlow 2默认使用动态图执行模式,但它仍然支持静态计算图的优化。对于一些需要高性能的场景,静态计算图可以提供更快的执行速度。

3. 广泛的社区支持和生态系统:TensorFlow作为一个较早的深度学习框架,拥有庞大的社区和丰富的生态系统,包括许多预训练模型、工具和库。

PyTorch的优势:

1. 动态计算图:PyTorch使用动态计算图,这意味着在构建神经网络时可以使用常见的Python语句(如if、while、for-loop),从而使网络构建过程更加直观和易于调试。

2. 易于使用的API:PyTorch的API设计非常直观,易于上手。它更加符合人类的思考过程,方便查看、修改中间变量的值。

3. 强大的GPU加速支持:PyTorch对GPU的支持非常出色,能够充分利用GPU进行加速计算。

TensorFlow 2和PyTorch各有优势,选择哪个框架取决于您的具体需求。如果您更关注工业级部署、静态计算图优化和广泛的生态系统支持,TensorFlow 2可能是更好的选择。而如果您更看重直观的动态计算图、易于使用的API和强大的GPU支持,那么PyTorch可能更适合您。

工具使用

这里使用的是【PyCharm Community Edition 2023.1.4】,社区版本免费用啊,用于学习绝对OK,python版本是3.9。

安装tensrflow

pip install tensorflow

或者直接在代码中

import tensorflow

ALT+回车,直接会出现安装提示,回车即可。

安装需要一些时间。

版本校验——tensorflow2

必须是这个版本,一定不能是1的,所以我们需要单独输出看看。

import tensorflow as tf
tf.__version__

直接运行可以看到对应的版本显示:

tensorflow常量constant

import tensorflow as tf
a = tf.constant([2, 3])
b = tf.constant([2, 4])
# 对象内容
print(a + b)
# 直接输出numpy结果。
print((a + b).numpy())

tensorflow基础数学计算

这里使用的时候例如下面是整数类型就都得是整数类型,不能出现浮点数什么的。

import tensorflow as tf
a = tf.constant([7, 22])
b = tf.constant([21.2, 55.7])
# 均值对象
print(tf.reduce_mean(a))
# 均值结果·整数值
print(tf.reduce_mean(a).numpy)
print(tf.reduce_mean(b).numpy)

平方计算

这里需要注意匹配数据类型。

import tensorflow as tf
a = tf.constant([7, 22])  # 不匹配
b = tf.constant([21.2, 55.7])  # 不匹配
# 外部计算均值·内部计算平方项·需要类型匹配
print(tf.reduce_mean(tf.square(b - a)))

最终效果:

tensorflow变量Variable

import tensorflow as tf
result = tf.Variable(666.666)
# 对象
print(result)
# 结果
print(result.numpy)

可以直接查看到结果,这里的numpy是函数,需要添加一对小括号。

API文档

点击打开文档可以直接查阅:All symbols in TensorFlow 2  |  TensorFlow v2.14.0

tensorflow2测试——构建一个线性模型

根据100个随机样本找出合适的w与b值,使得y=wx+b;

大致操作过程:

  1. 读取数据
  2. 构造一个线性模型 y=wx+b
  3. 构造损失函数
  4. 最小化方差(训练)
  5. 性能评估

csv文件快速生成:

=RANDBETWEEN(100000,999999)/1000000

=RANDBETWEEN(400000,599999)/100000

基本分析

import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据
# 直接获取二维数组·方便索引缩着切分
data = pd.read_csv("tensorflow_test_info.csv").values
# 样本特征·第一列的值
x = data[:, 0]
# 目标值·第二列的值
y = data[:, 1]
# 构造线性模型y=wx+b
# 我们计算分析的是浮点数,所以加上.0
w = tf.Variable(-6.0)
b = tf.Variable(6.0)
def model(x, w, b):
    """模型函数"""
    return w * x + b
# 视图呈现
plt.figure(figsize=(10, 5))
plt.axis([-0.01, 1.2, 1, 10])
plt.scatter(x, y)
plt.plot(x, model(x, w, b).numpy(), color='red')
plt.legend(['predicted_y', 'target_y'])
plt.show()

效果图:

构造损失函数

def loss(predicted_y, target_y):
    """损失函数"""
    return tf.reduce_mean(tf.square(predicted_y - target_y))

最小化方差优化

with tf.GradientTape() as t:
    """最小化方差优化"""
    dw, dd = t.gradient(loss((model(x, w, b), y), [w, b]))

训练效果

训练100遍效果:

训练1000遍最终结果:

视频效果:

tensorflow2测试——构建一个线性模型——训练效果

总结

最后从效果上看还是OK的,数据我准备的一般,没有成线性,毕竟是随机搞的,如果有兴趣的话可以做一个更贴近的随机数线性数据效果会更好的呢。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
73 11
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
81 0
|
30天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
4天前
|
机器学习/深度学习 数据采集 人工智能
人工智能在农业中的应用:智慧农业的未来
人工智能在农业中的应用:智慧农业的未来
27 11
|
24天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
19天前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
171 10
|
26天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
85 9
|
29天前
|
机器学习/深度学习 数据采集 人工智能
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能在医疗诊断中的应用与挑战
随着人工智能技术的飞速发展,其在医疗领域的应用日益广泛,尤其是在疾病诊断方面展现出巨大的潜力。本文将深入探讨AI技术在医疗诊断中的应用现状、面临的挑战以及未来的发展趋势,旨在为相关领域的研究者和从业者提供参考和启示。
53 2