ResNeXt结构的pytorch实现

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: ResNeXt结构的pytorch实现

1.ResNeXt的介绍


ResNeXt是ResNet基础上的改进版本,改进的部分不多,主要将之前的残差结构换成了另外的一个block结构,并且使用了组卷积的概念。

image.png

性能参数指标

image.png

可以看见ResNeXt的性能还是有提升的。

image.png

在计算量相同的情况下,错误率更低


普通的卷积

image.png

假设输入矩阵的channel是Cin,而输出的channel的n,同时kernel size是k,那么卷积所需要的参数是Cin * n * k * k


组卷积

image.png

组卷积的概念是,将输入矩阵的channel平均分为group组,简称g组。那么对于这g组中的每一组的channel就变成了 Cin/g ,如果输出的channel同样是n时,那么对于每一组的channel就需要去卷积一个channel为 n/g 的卷积核,最后g个 n/g 的输出拼接为一个channel为n的最终输出。那么此时所需要的参数量是:((Cin/g) * (n/g) * k * k)*g


可以看见,对比所使用的的参数量,组卷积比普通的卷积少得多,只是原来的1/g。


需要注意:当分组的个数等于输入的channel数,而输出的channels也等于输入的channel时,此时就是MobileNet中的DW卷积。

image.png


对于以上的三个图,在数学的计算上是完全一致的,但是最后的一个图看起来比较的简洁。

image.png


残差结构的主要步骤:


  1. 首先对输入的矩阵进行1x1的卷积处理,实现了降维的效果,从channel为256,降到了128.
  2. 然后通过3x3的组卷积,分为32组,进行卷积处理,此时的channel不变,仍然是128.
  3. 最后再进行1x1的卷积处理,实现了升维的效果,从channel为128,升到了256.
  4. 而此时的输出在于输入作相加,实现残差结构。


RexNeXt与ResNet的主要变化就是结构变化:

image.png

其中ResNeXt-50(32x4d)的参数如图所示:

20210515161819681.png

ResNeXt-50(32x4d)中的32值的是拆分出来的组数量,而4便是每个拆分出来的组的channels个数。其中group设置32的原因是,其效果最好。而对于浅层次的网络,比如18/34层,ResNeXt提出的改进结构并没有很明显的效果,所以不适用于浅层的网络。


2.ResNeXt的实现


1)自定义模型结构参考代码

import torch
import torch.nn as nn
num_class = 5
resnext50_32x4d_params = [3, 4, 6, 3]
resnext101_32x8d_params = [3, 4, 23, 3]
# 定义Conv1层
def Conv1(in_planes, places, stride=2):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False),
        nn.BatchNorm2d(places),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )
class ResNeXtBlock(nn.Module):
    def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 2, cardinality=32):
        super(ResNeXtBlock,self).__init__()
        self.expansion = expansion
        self.downsampling = downsampling
        # torch.Size([1, 256, 56, 56])
        # torch.Size([1, 512, 28, 28])
        # torch.Size([1, 1024, 14, 14])
        # torch.Size([1, 2048, 7, 7])
        self.bottleneck = nn.Sequential(
            nn.Conv2d(in_channels=in_places, out_channels=places, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False, groups=cardinality),  # 使用了组卷积
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places * self.expansion, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(places * self.expansion),
        )
        if self.downsampling:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels=in_places, out_channels=places * self.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(places * self.expansion)
            )
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        residual = x
        out = self.bottleneck(x)
        if self.downsampling:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out
class ResNet(nn.Module):
    def __init__(self,blocks, blockkinds, num_classes=num_class):
        super(ResNet,self).__init__()
        self.blockkinds = blockkinds
        self.conv1 = Conv1(in_planes = 3, places= 64)
        if self.blockkinds == ResNeXtBlock:
            self.expansion = 2
            # 64 -> 128
            self.layer1 = self.make_layer(in_places=64, places=128, block=blocks[0], stride=1)
            # 256 -> 256
            self.layer2 = self.make_layer(in_places=256, places=256, block=blocks[1], stride=2)
            # 512 -> 512
            self.layer3 = self.make_layer(in_places=512, places=512, block=blocks[2], stride=2)
            # 1024 -> 1024
            self.layer4 = self.make_layer(in_places=1024, places=1024, block=blocks[3], stride=2)
            self.fc = nn.Linear(2048, num_classes)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        # 初始化网络结构
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # 采用了何凯明的初始化方法
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
    def make_layer(self, in_places, places, block, stride):
        layers = []
        # torch.Size([1, 256, 56, 56])
        layers.append(self.blockkinds(in_places, places, stride, downsampling =True))
        for i in range(1, block):
            layers.append(self.blockkinds(places*self.expansion, places))
        return nn.Sequential(*layers)
    def forward(self, x):
        # conv1层
        x = self.conv1(x)   # torch.Size([1, 64, 56, 56])
        # conv2_x层
        x = self.layer1(x)  # torch.Size([1, 256, 56, 56])
        # conv3_x层
        x = self.layer2(x)  # torch.Size([1, 512, 28, 28])
        # conv4_x层
        x = self.layer3(x)  # torch.Size([1, 1024, 14, 14])
        # conv5_x层
        x = self.layer4(x)  # torch.Size([1, 2048, 7, 7])
        x = self.avgpool(x) # torch.Size([1, 2048, 1, 1]) / torch.Size([1, 512])
        x = x.view(x.size(0), -1)   # torch.Size([1, 2048]) / torch.Size([1, 512])
        x = self.fc(x)      # torch.Size([1, 5])
        return x
def ResNeXt50_32x4d():
    return ResNet(resnext50_32x4d_params, ResNeXtBlock)
def ResNeXt101_32x8d():
    return ResNet(resnext101_32x8d_params, ResNeXtBlock)
if __name__ =='__main__':
    # model = ResNeXtBlock(in_places=256, places=128)
    # print(model)
    # model = ResNeXt50_32x4d()
    model = ResNeXt101_32x8d()
    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)


2)迁移学习模型结构参考代码

from torchvision.models import resnext101_32x8d
from utils import Flatten
if __name__ =='__main__':
  # 迁移学习
    trained_model = resnext101_32x8d(pretrained=True)
    model = nn.Sequential(*list(trained_model.children())[:-1],  # torch.Size([32, 512, 1, 1])
                          Flatten(),  # torch.Size([32, 512])
                          nn.Linear(2048, 5)  # torch.Size([32, 5])
                          )
    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)
# output:
# Downloading: "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth" to C:\Users\Acer/.cache\torch\hub\checkpoints\resnext101_32x8d-8ba56ff5.pth
# 100.0%
# torch.Size([1, 5])


3.ResNet与ResNeXt实现完整代码


import torch
import torch.nn as nn
# 分类数目
num_class = 5
# 各层数目
resnet18_params = [2, 2, 2, 2]
resnet34_params = [3, 4, 6, 3]
resnet50_params = [3, 4, 6, 3]
resnet101_params = [3, 4, 23, 3]
resnet152_params = [3, 8, 36, 3]
resnext50_32x4d_params = [3, 4, 6, 3]
resnext101_32x8d_params = [3, 4, 23, 3]
# 定义Conv1层
def Conv1(in_planes, places, stride=2):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False),
        nn.BatchNorm2d(places),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )
# 浅层的残差结构
class BasicBlock(nn.Module):
    def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 1):
        super(BasicBlock,self).__init__()
        self.expansion = expansion
        self.downsampling = downsampling
        # torch.Size([1, 64, 56, 56]), stride = 1
        # torch.Size([1, 128, 28, 28]), stride = 2
        # torch.Size([1, 256, 14, 14]), stride = 2
        # torch.Size([1, 512, 7, 7]), stride = 2
        self.basicblock = nn.Sequential(
            nn.Conv2d(in_channels=in_places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(places * self.expansion),
        )
        # torch.Size([1, 64, 56, 56])
        # torch.Size([1, 128, 28, 28])
        # torch.Size([1, 256, 14, 14])
        # torch.Size([1, 512, 7, 7])
        # 每个大模块的第一个残差结构需要改变步长
        if self.downsampling:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels=in_places, out_channels=places*self.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(places*self.expansion)
            )
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        # 实线分支
        residual = x
        out = self.basicblock(x)
        # 虚线分支
        if self.downsampling:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out
# 深层的残差结构
class Bottleneck(nn.Module):
    # 注意:默认 downsampling=False
    def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 4):
        super(Bottleneck,self).__init__()
        self.expansion = expansion
        self.downsampling = downsampling
        self.bottleneck = nn.Sequential(
            # torch.Size([1, 64, 56, 56]),stride=1
            # torch.Size([1, 128, 56, 56]),stride=1
            # torch.Size([1, 256, 28, 28]), stride=1
            # torch.Size([1, 512, 14, 14]), stride=1
            nn.Conv2d(in_channels=in_places,out_channels=places,kernel_size=1,stride=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            # torch.Size([1, 64, 56, 56]),stride=1
            # torch.Size([1, 128, 28, 28]), stride=2
            # torch.Size([1, 256, 14, 14]), stride=2
            # torch.Size([1, 512, 7, 7]), stride=2
            nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            # torch.Size([1, 256, 56, 56]),stride=1
            # torch.Size([1, 512, 28, 28]), stride=1
            # torch.Size([1, 1024, 14, 14]), stride=1
            # torch.Size([1, 2048, 7, 7]), stride=1
            nn.Conv2d(in_channels=places, out_channels=places * self.expansion, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(places * self.expansion),
        )
        # torch.Size([1, 256, 56, 56])
        # torch.Size([1, 512, 28, 28])
        # torch.Size([1, 1024, 14, 14])
        # torch.Size([1, 2048, 7, 7])
        if self.downsampling:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels=in_places, out_channels=places*self.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(places*self.expansion)
            )
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        # 实线分支
        residual = x
        out = self.bottleneck(x)
        # 虚线分支
        if self.downsampling:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out
# 定义ResNeXt残差结构
class ResNeXtBlock(nn.Module):
    def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 2, cardinality=32):
        super(ResNeXtBlock,self).__init__()
        self.expansion = expansion
        self.downsampling = downsampling
        # torch.Size([1, 256, 56, 56])
        # torch.Size([1, 512, 28, 28])
        # torch.Size([1, 1024, 14, 14])
        # torch.Size([1, 2048, 7, 7])
        self.bottleneck = nn.Sequential(
            nn.Conv2d(in_channels=in_places, out_channels=places, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False, groups=cardinality),  # 使用了组卷积
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places * self.expansion, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(places * self.expansion),
        )
        if self.downsampling:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels=in_places, out_channels=places * self.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(places * self.expansion)
            )
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
      # 实现分支
        residual = x
        out = self.bottleneck(x)
  # 虚线分支
        if self.downsampling:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out
class ResNet(nn.Module):
    def __init__(self,blocks, blockkinds, num_classes=num_class):
        super(ResNet,self).__init__()
        self.blockkinds = blockkinds
        self.conv1 = Conv1(in_planes = 3, places= 64)
        # 对应浅层网络结构
        if self.blockkinds == BasicBlock:
            self.expansion = 1
            # 64 -> 64
            self.layer1 = self.make_layer(in_places=64, places=64, block=blocks[0], stride=1)
            # 64 -> 128
            self.layer2 = self.make_layer(in_places=64, places=128, block=blocks[1], stride=2)
            # 128 -> 256
            self.layer3 = self.make_layer(in_places=128, places=256, block=blocks[2], stride=2)
            # 256 -> 512
            self.layer4 = self.make_layer(in_places=256, places=512, block=blocks[3], stride=2)
            self.fc = nn.Linear(512, num_classes)
            print("blockkinds == BasicBlock")
        # 对应深层网络结构
        if self.blockkinds == Bottleneck:
            self.expansion = 4
            # 64 -> 64
            self.layer1 = self.make_layer(in_places = 64, places= 64, block=blocks[0], stride=1)
            # 256 -> 128
            self.layer2 = self.make_layer(in_places = 256,places=128, block=blocks[1], stride=2)
            # 512 -> 256
            self.layer3 = self.make_layer(in_places=512,places=256, block=blocks[2], stride=2)
            # 1024 -> 512
            self.layer4 = self.make_layer(in_places=1024,places=512, block=blocks[3], stride=2)
            self.fc = nn.Linear(2048, num_classes)
            print("blockkinds == Bottleneck")
        # 对应ResNeXt结构
        if self.blockkinds == ResNeXtBlock:
            self.expansion = 2
            # 64 -> 128
            self.layer1 = self.make_layer(in_places=64, places=128, block=blocks[0], stride=1)
            # 256 -> 256
            self.layer2 = self.make_layer(in_places=256, places=256, block=blocks[1], stride=2)
            # 512 -> 512
            self.layer3 = self.make_layer(in_places=512, places=512, block=blocks[2], stride=2)
            # 1024 -> 1024
            self.layer4 = self.make_layer(in_places=1024, places=1024, block=blocks[3], stride=2)
            self.fc = nn.Linear(2048, num_classes)
            print("blockkinds == ResNeXtBlock")
        self.avgpool = nn.AvgPool2d(7, stride=1)
        # 初始化网络结构
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # 采用了何凯明的初始化方法
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
    def make_layer(self, in_places, places, block, stride):
        layers = []
        # torch.Size([1, 64, 56, 56])  -> torch.Size([1, 256, 56, 56]), stride=1 故w,h不变
        # torch.Size([1, 256, 56, 56]) -> torch.Size([1, 512, 28, 28]), stride=2 故w,h变
        # torch.Size([1, 512, 28, 28]) -> torch.Size([1, 1024, 14, 14]),stride=2 故w,h变
        # torch.Size([1, 1024, 14, 14]) -> torch.Size([1, 2048, 7, 7]), stride=2 故w,h变
        # 此步需要通过虚线分支,downsampling=True
        layers.append(self.blockkinds(in_places, places, stride, downsampling =True))
        # torch.Size([1, 256, 56, 56]) -> torch.Size([1, 256, 56, 56])
        # torch.Size([1, 512, 28, 28]) -> torch.Size([1, 512, 28, 28])
        # torch.Size([1, 1024, 14, 14]) -> torch.Size([1, 1024, 14, 14])
        # torch.Size([1, 2048, 7, 7]) -> torch.Size([1, 2048, 7, 7])
        # print("places*self.expansion:", places*self.expansion)
        # print("block:", block)
        # 此步需要通过实线分支,downsampling=False, 每个大模块的第一个残差结构需要改变步长
        for i in range(1, block):
            layers.append(self.blockkinds(places*self.expansion, places))
        return nn.Sequential(*layers)
    def forward(self, x):
        # conv1层
        x = self.conv1(x)   # torch.Size([1, 64, 56, 56])
        # conv2_x层
        x = self.layer1(x)  # torch.Size([1, 256, 56, 56])
        # conv3_x层
        x = self.layer2(x)  # torch.Size([1, 512, 28, 28])
        # conv4_x层
        x = self.layer3(x)  # torch.Size([1, 1024, 14, 14])
        # conv5_x层
        x = self.layer4(x)  # torch.Size([1, 2048, 7, 7])
        x = self.avgpool(x) # torch.Size([1, 2048, 1, 1]) / torch.Size([1, 512])
        x = x.view(x.size(0), -1)   # torch.Size([1, 2048]) / torch.Size([1, 512])
        x = self.fc(x)      # torch.Size([1, 5])
        return x
def ResNet18():
    return ResNet(resnet18_params, BasicBlock)
def ResNet34():
    return ResNet(resnet34_params, BasicBlock)
def ResNet50():
    return ResNet(resnet50_params, Bottleneck)
def ResNet101():
    return ResNet(resnet101_params, Bottleneck)
def ResNet152():
    return ResNet(resnet152_params, Bottleneck)
def ResNeXt50_32x4d():
    return ResNet(resnext50_32x4d_params, ResNeXtBlock)
def ResNeXt101_32x8d():
    return ResNet(resnext101_32x8d_params, ResNeXtBlock)
if __name__=='__main__':
    # model = torchvision.models.resnet50()
    # 模型测试
    # model = ResNet18()
    # model = ResNet34()
    # model = ResNet50()
    # model = ResNet101()
    # model = ResNet152()
    # model = ResNeXt50_32x4d()
    model = ResNeXt101_32x8d()
    # print(model)
    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)


参考:

https://www.bilibili.com/video/BV1T7411T7wa


相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
机器学习/深度学习 编解码 PyTorch
ResNeXt代码复现+超详细注释(PyTorch)
ResNeXt代码复现+超详细注释(PyTorch)
391 0
|
26天前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
118 2
|
28天前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
50 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
46 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
126 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
2月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
39 3
PyTorch 模型调试与故障排除指南
|
1月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法
|
3月前
|
机器学习/深度学习 PyTorch 编译器
PyTorch 与 TorchScript:模型的序列化与加速
【8月更文第27天】PyTorch 是一个非常流行的深度学习框架,它以其灵活性和易用性而著称。然而,当涉及到模型的部署和性能优化时,PyTorch 的动态计算图可能会带来一些挑战。为了解决这些问题,PyTorch 引入了 TorchScript,这是一个用于序列化和优化 PyTorch 模型的工具。本文将详细介绍如何使用 TorchScript 来序列化 PyTorch 模型以及如何加速模型的执行。
111 4
|
3月前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch 与边缘计算:将深度学习模型部署到嵌入式设备
【8月更文第29天】随着物联网技术的发展,越来越多的数据处理任务开始在边缘设备上执行,以减少网络延迟、降低带宽成本并提高隐私保护水平。PyTorch 是一个广泛使用的深度学习框架,它不仅支持高效的模型训练,还提供了多种工具帮助开发者将模型部署到边缘设备。本文将探讨如何将PyTorch模型高效地部署到嵌入式设备上,并通过一个具体的示例来展示整个流程。
438 1
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch与Hugging Face Transformers:快速构建先进的NLP模型
【8月更文第27天】随着自然语言处理(NLP)技术的快速发展,深度学习模型已经成为了构建高质量NLP应用程序的关键。PyTorch 作为一种强大的深度学习框架,提供了灵活的 API 和高效的性能,非常适合于构建复杂的 NLP 模型。Hugging Face Transformers 库则是目前最流行的预训练模型库之一,它为 PyTorch 提供了大量的预训练模型和工具,极大地简化了模型训练和部署的过程。
155 2