【实验】阿里云大数据助理工程师认证(ACA)- QuickBI数据分析(下)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
智能商业分析 Quick BI,专业版 50license 1个月
简介: 【实验】阿里云大数据助理工程师认证(ACA)- QuickBI数据分析

我们可以看到,在数量字段前有一个标签SUM,该标签指定了数量字段的聚合方式,即求和。如果我们需要改变数量字段的聚合方式,只需要点击SUM标签,然后选择相应的聚合方式即可(在这个步骤中不需要修改数量字段的聚合方式)。

202007111429574.png

如果我们需要对数据集中的某些字段进行过滤,只需要将相应的字段拖动到过滤器中,然后填写相应的过滤条件即可(在本步骤中不需要对字段进行过滤操作)。

20200711143015210.png

在完成了上述操作之后,我们只需要点击更新按钮,即可生成相应的交叉表。交叉表如下图所示:


20200711143034494.png

在生成了交叉表之后我们可以在页面右侧,图表设计的样式中,将交叉表的表名修改为Sales_Amount


20200711143059895.png


修改完成之后,我们可以看到交叉表的表名已经变成了Sales_Amount


20200711143120142.png

5. 如果我们需要分析该公司月度平均销售额,那么我们就需要改变相应度量的聚合方式。首先我们点击页面上方的工具栏中的交叉表,重新创建一个交叉表。

然后在页面右侧选择数据集Global_Superstore_Orders_2016,选择的方法与之前的步骤相同。然后将维度中的订购日期(month)和度量中的销售额分别拖动到行和列中,如下图所示


20200711143149637.png


点击销售额前方的聚合类型的标签SUM,将聚合类型修改为平均值(AVG)

20200711143212989.png


然后点击更新按钮即可得到相应的交叉表

20200711143232638.png

月度平均销售额交叉表如下图所示:


2020071114325090.png

在生成了交叉表之后我们可以在页面右侧,图表设计的样式中,将交叉表的表名修改为Avg_Sale


20200711143307911.png


修改完成之后,我们可以看到交叉表的表名已经变成了Avg_Sale

6. 点击页面右上角的保存按钮

7. 在保存仪表板的对话框中,将仪表板的名称修改为报表,然后点击确定即可保存仪表板。如果有需求,我们可以将仪表板保存到不同的位置。

8. 保存完成之后我们就可以在仪表板页面查看我们刚才保存的仪表板


第 3 章:思考与讨论


3.1 思考与讨论


阿里云Quick BI产品相对于普通桌面Excel等电子表格有什么优势?

参考答案


Quick BI 支持众多种类的数据源,既可以连接 MaxCompute(ODPS)、RDS、ADS、HybridDB(Greenplum)等云数据源,也支持连接 ECS 上您自有的 MySQL 数据库,还支持上传本地文件到 Quick BI 内置的探索空间进行分析。


由于云计算的天生优势,使用Quick BI处理和分析海量数据成本很低。


Quick BI 使用起来很简单,通过提供智能化的数据建模工具,极大降低了数据的获取成本和使用门槛,拖拽式操作和丰富的可视化图表控件为数据分析提供了便利。

相关实践学习
助力游戏运营数据分析
本体验通过多产品组合构建了游戏数据运营分析平台,提供全面的游戏运营指标分析功能,并有效的分析渠道效果。更加有效地掌握游戏运营状态,也可充分利用数据分析的结果改进产品体验,提高游戏收益。
Quick BI在业务数据分析中的实战应用
Quick BI 是一款专为云上用户和企业量身打造的新一代自助式智能BI服务平台,其简单易用的可视化操作和灵活高效的多维分析能力,让精细化数据洞察为商业决策保驾护航。为了帮助您更快的学习和上手产品,同时更好地感受QuickBI在业务数据分析实践中的高效价值,下面将以一个真实的数据分析案例为场景带您开启QuickBI产品之旅。场景:假设您是一家大型互联网新零售企业的数据分析师,您的经理刚刚拿到8月份的月度运营分析数据,他发现近期企业运营状况不佳,8月份毛利额环比前几个月下滑较大,三季度存在达标风险。因此将这个任务交给了您,根据订单信息和流量渠道信息等相关数据,分析企业8月份毛利额下滑的关键要素,并将其分享给团队,以便指导相关业务部门采取决策和行动,提高企业整体毛利额。  
目录
相关文章
|
17天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
19天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
10天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
2月前
|
人工智能 分布式计算 DataWorks
连续四年!阿里云领跑中国公有云大数据平台
近日,国际数据公司(IDC)发布《中国大数据平台市场份额,2023:数智融合时代的真正到来》报告——2023年中国大数据平台公有云服务市场规模达72.2亿元人民币,其中阿里巴巴市场份额保持领先,占比达40.2%,连续四年排名第一。
204 12
|
2月前
|
SQL 人工智能 大数据
首个大数据批流融合国家标准正式发布,阿里云为牵头起草单位!
近日,国家市场监督管理总局、国家标准化管理委员会正式发布大数据领域首个批流融合国家标准 GB/T 44216-2024《信息技术 大数据 批流融合计算技术要求》,该标准由阿里云牵头起草,并将于2025年2月1日起正式实施。
|
1月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
164 0
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
79 2
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
179 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
84 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
12天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。

热门文章

最新文章