【Python数据分析 - 11】:DataFrame索引操作(pandas篇)

简介: 【Python数据分析 - 11】:DataFrame索引操作(pandas篇)

DataFrame索引操作


数据准备

b89e3f4489f042e2ac5738cfb987e271.png

准备的数据742d10700c8e421ca4466b73598f4bf9.png


重置索引 - reset_index()


  • 获得新的index,原来的index变为数据列,保留下来

551f0bd39fe940b485c257359e73f5de.png


若不想保留原来的index,使用参数drop=True,默认为False

d98abe9d1b0d4d7bbf9a2854e2866432.png



构建一个DataFrame


df = pd.DataFrame(
    {'水果':['苹果', '香蕉', '哈密瓜'], 
     '数量':[10, 20, 30], 
     '价格':[5, 10, 15],
     '产地':['上海', '广东', '深圳'],
     '包装厂':['大厂', '中厂', '小厂']
    })


94b34b2356e84443abf39d9b0d0416b8.png



设置其他列为索引 - set_index()


8e5e2ef73f194823b41d483809a79b02.png


注意:inplace=True 时才能真正的在原来的DataFrame上进行修改,默认为False

18391f1909394adb99d7236c5e4d3649.png




设置多个索引

设置多个索引时以列表的形式进行设置,它会重设索引,覆盖掉原来的索引。


7322679ba5124fe2b4e84ef6656aa394.png


7322679ba5124fe2b4e84ef6656aa394.png


修改列索引名


方法一:直接修改 - columns


b67e1be6b7b140bfb805b6fdad238120.png


方法二:rename方法


接收一个字典,键为旧索引,值为新索引

bb75cbdce27d48c49c3ca6db0dfd1de1.png


a57321fdd51e42e3bac9f82b585e020d.png


删除行或列 - drop()


  • 删除列


2439c559b1614c69b4895da1f7c5b5a4.png

b7019eb9a5f34eae9f204c2d797591b7.png

相关文章
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
1天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
91 73
|
2天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
91 71
|
29天前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
155 67
|
7天前
|
数据挖掘 数据处理 索引
Pandas数据重命名:列名与索引为标题
Pandas 是强大的数据分析工具,支持灵活的数据结构和操作。本文介绍如何使用 Pandas 对 `DataFrame` 的列名和索引进行重命名,包括直接赋值法、`rename()` 方法及索引修改。通过代码示例展示了具体操作,并讨论了常见问题如名称冲突、数据类型不匹配及 `inplace` 参数的使用。掌握这些技巧可使数据更清晰易懂,便于后续分析。
47 29
|
3天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
30 5
|
15天前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
51 10
|
29天前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
48 4
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
2月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势