【Python百日刷题计划】Day6~初识算法与递归

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【Python百日刷题计划】Day6~初识算法与递归

 🍀目录

🍏例一前言

🍏例一要求

🍏例一解析

🍏二分法流程图分析

🍏例一答案

🍅例二前言

🍅例二要求

🍅例二解析

🍅例二答案

🍅例题二思考

🍀最后


🍏例一前言

如果有一个列表 'l',要 让你从这个列表中找到66的位置,你要怎么做?

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

你可能使用以下方法会很简单的到结果:

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]
print('l中66的索引位置是:',l.index(66))
输出结果:
l中66的索引位置是: 17
image.gif

我们之所以用index方法可以找到,是因为python内部帮我们实现了查找方法。如果题目明确规定index方法不给你用了,并且只能够使用算法查找,你还能找到这个66么?

🍏例一要求

使用二分查找算法实现列表中index方法的功能,例如给你一个列表

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

通过调用你写的find函数可以返回该列表中你想查找的元素的下标,如果你想查找的元素不在该列表中调用find函数则返回'你想要的值不在该列表中'

🍏例一解析

    • 简述一下算法:

           我们学习的算法都是过去时,只有我们了解基础算法,才能够创造出更好的算法,不是

    所有的事情都能套用现成的方法解决,有的时候会用到学过的算法知识来解决新的问题。

      • 二分法的使用条件:

      1)数组为有序数组。

      2)同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的。        

      解决本题之前应该要熟悉递归函数的使用方法以及二分法的条件

      🍏二分法流程图分析

      比如们要在列表中找到元素66对应的位置,应该将每一次列表的中间数与66进行比较,第一次比较中间值41<66,则说明66位于41的右边,则下一次取41右边的所有数的中间值与66进行比较,以此类推直到中间值与66相同就找到了66所在的位置。

      image.gif编辑

      🍏例一答案

      l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]
      #确定函数的参数l为想找元素所在的列表,aim为想找的元素,其他为默认参数
      def find(l,aim,start=0,end=None):              
          end = len(l) if end is None else end
          mid_index = (end - start) // 2 + start    #求中间值mid_index
          if start <= end:                          #若start > end则说明元素不在该列表中
              if aim > l[mid_index]:
                  return find(l,aim,start = mid_index + 1,end=end)
              if aim < l[mid_index]:
                  return find(l, aim,start=start,end=mid_index - 1)
              else:
                  return mid_index
          else:
              print('你想要的值不在该列表中')
      image.gif

      🍅例二前言

      这里我们又要举个例子来说明递归能做的事情。

      例二:

      现在你们问我,A同学多大了?我说我不告诉你,但A同学比 B同学大两岁。

      你想知道A同学多大,你是不是还得去问B同学的年龄?B同学说,我也不告诉你,但我比C同学大两岁。

      你又问C同学的年龄,C同学也不告诉你,他说他比D同学大两岁。

      那你问D同学,D同学终于告诉你,他18了。

      这个时候你是不是就知道了?A同学多大?

      image.gif

      🍅例二要求

      使用递归函数求得各个同学的年龄

      🍅例二解析

      本题难度十分小,主要是了解递归

      递归函数:在一个函数里在调用这个函数本身。

      递归的最大深度:998

      正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去。但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属于它自己的名称空间,如果一直调用下去,就会造成名称空间占用太多内存的问题,于是python为了杜绝此类现象,强制的将递归层数控制在了997

      条件:

        1、超过最大递归限制的报错
         2、只要写递归函数,必须有结束条件
      返回值:
         1、不要只看到return就认为已经返回了,要看返回操作是在递归的第几层的时候发生的
         然后返回给了谁
         2、如果不是返回给了最外层函数,调用者就接收不到,需要再分析,看如何把结果返回回来

      🍅例二答案

      参数n表示想找学生的序号:例A(n = 1),B(n = 2)……

      def age(n):
          if n == 4:
              return 18
          else:
              return age(n+1) + 2
      image.gif

      🍅例题二思考

      找出下面代码出错的原因,为什么没写return不是返回None而是报错呢?以及为什么会出现以下的错误类型

      def age(n):
          if n == 4:
              return 18
          else:
              age(n+1) + 2
      print(age(2))
      输出结果:
      TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'
      错误翻译:
      TypeError:+ 不支持的操作数类型:“NoneType”和“int”
      image.gif

      结合以下代码分析

      image.gif


      相关文章
      |
      6天前
      |
      机器学习/深度学习 人工智能 算法
      基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
      垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
      29 0
      基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
      |
      6天前
      |
      机器学习/深度学习 人工智能 算法
      【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
      手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
      22 0
      【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
      |
      6天前
      |
      机器学习/深度学习 人工智能 算法
      基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
      蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
      31 0
      基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
      |
      11天前
      |
      算法 Python
      在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
      在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
      28 2
      |
      20天前
      |
      算法 测试技术 开发者
      在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
      在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
      20 3
      |
      23天前
      |
      机器学习/深度学习 人工智能 算法
      【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
      车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
      67 0
      【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
      |
      27天前
      |
      机器学习/深度学习 算法 Java
      机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
      机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
      |
      6天前
      |
      机器学习/深度学习 人工智能 TensorFlow
      人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
      【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
      |
      6天前
      |
      机器学习/深度学习 数据挖掘 Python
      Python编程入门——从零开始构建你的第一个程序
      【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
      |
      6天前
      |
      存储 Python
      Python编程入门:打造你的第一个程序
      【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!