python k-means聚类算法 物流分配预测实战(超详细,附源码)

简介: python k-means聚类算法 物流分配预测实战(超详细,附源码)

数据集和地图可以点赞关注收藏后私信博主要


聚类是一类机器学习基础算法的总称。


聚类的核心计算过程是将数据对象集合按相似程度划分成多个类,划分得到的每个类称为聚类的簇


聚类不等于分类,其主要区别在于聚类所面对的目标类别是未知的


k-means聚类也称为K均值聚类算法,是典型的聚类算法,对于给定的数据集和需要划分的类数K,算法根据距离函数进行迭代处理,动态 的把数据划分成K个簇,直到收敛为止,簇中心也称为聚类中心


先来个小例子


这个是通过聚类算法对鸢尾花数据集的预测结果

1666430024136.jpg

代码如下

from sklearn.cluster import  KMeans
from sklearn import  datasets
import  numpy as np
iris=datasets.load_iris()
x=iris.data
y=iris.target
clf=KMeans(n_clusters=3)
model=clf.fit(x)
predicted=model.predict(x)
print("预测值",predicted)
print("真实值",y)
print()


同样地k-means聚类算法广泛地应用于人群分类,图像分割,物种聚类等等问题中


下面以一个物流配送问题为例进行详细讲解


问题描述:双十一期间,物流公司要给某城市的50个客户配送货物,假设公司只有5辆货车,客户的地理坐标在txt文件中,如何配送效率最高


问题分析:使用k-means算法,将地址数据分为5类,由于每一类客户地址相近,可以分配给同一台货车


原地图如下

1666430052087.jpg

经过聚类分析后结果如下

1666430066099.jpg

很明显根据客户的地址分为5个簇,每个簇由一台货车集中配送


源代码如下

#coding=utf-8
from numpy import *
from matplotlib import pyplot as plt
import matplotlib; matplotlib.use('TkAgg')
def disteclud(veca,vecb):
    return sqrt(sum(power(veca-vecb,2)))
def initcenter(dataset,k):
    print('2.initalize cluster center')
    shape=dataset.shape
    n=shape[1]
    classcenter=array(zeros((k,n)))
    for j in range(n):
        firstk=dataset[:k,j]
        classcenter[:,j]=firstk
    return  classcenter
def mykmeans(dataset,k):
    m=len(dataset)
    clusterpoints=array(zeros((m,2)))
    classCenter=initcenter(dataset,k)
    clusterchanged=True
    print('3.recompute and reallocated')
    while clusterchanged:
        clusterchanged=False
        for i in range(m):
            mindist=inf
            minindex=-1
            for j in range(k):
                distji=disteclud(classCenter[j,:],dataset[i,:])
                if distji<mindist:
                    mindist=distji;minindex=j
            if clusterpoints[i,0]!=minindex:
                clusterchanged=True
            clusterpoints[i,:]=minindex,mindist**2
        for cent in range(k):
            ptsinclust=dataset[nonzero(clusterpoints[:,0]==cent)[0]]
            classCenter[cent,:]=mean(ptsinclust,axis=0)
    return classCenter,clusterpoints
def show(dataset,k,classCenter,clusterPoints):
    print('4.load the map')
    fig=plt.figure()
    rect=[0.1,0.1,1.0,1.0]
    axprops=dict(xticks=[],yticks=[])
    ax0=fig.add_axes(rect,label='ax1',frameon=False)
    imgp=plt.imread(r'C:\Users\Admin\Desktop\city.png')
    ax0.imshow(imgp)
    ax1=fig.add_axes(rect,label='ax1',frameon=False)
    print('5.show the clusters')
    numsamples=len(dataset)
    mark=['ok','^b','om','og','sc']
    for i in range(numsamples):
        markindex=int(clusterPoints[i,0])%k
        ax1.plot(dataset[i,0],dataset[i,1],mark[markindex])
    for i in range(k):
        markindex=int(clusterPoints[i,0])%k
        ax1.plot(classCenter[i,0],classCenter[i,1],'^r',markersize=12)
    plt.show()
print('1. load the dataset')
dataset=loadtxt(r'C:\Users\Admin\Desktop\testSet.txt')
k=5
classCenter,clssspoints=mykmeans(dataset,k)
show(dataset,k,classCenter,clssspoints)


相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
15 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
11 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
9 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
6天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
23 2
|
18天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
61 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
23天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
52 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
Python
PYTHON实战两数之和
1. 两数之和 难度:简单 收藏 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回答案。
188 0
PYTHON实战两数之和
|
1天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
1天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。