基于PaddleOCR的体检报告识别(一)

本文涉及的产品
文档理解,结构化解析 100页
小语种识别,小语种识别 200次/月
教育场景识别,教育场景识别 200次/月
简介: 面对飞速发展互联网医疗时代,医疗信息化建设已经成为医疗行业发展的趋势。经调研,约80%的医学病历是处于非结构化状态的,难以直接被利用而造成了大量医学资源浪费。医疗数据中大量的半结构化与无结构化的文本,医学术语的专业性以及语言表达的多样性为结构化信息抽取带来了很大难度。因此,针对电子病历和报告的信息识别抽取和结构化管理对临床诊断、疾病预防与医学研究具有重要意义。

基于PaddleOCR的体检报告识别


一、项目背景与意义

    面对飞速发展互联网医疗时代,医疗信息化建设已经成为医疗行业发展的趋势。经调研,约80%的医学病历是处于非结构化状态的,难以直接被利用而造成了大量医学资源浪费。医疗数据中大量的半结构化与无结构化的文本,医学术语的专业性以及语言表达的多样性为结构化信息抽取带来了很大难度。因此,针对电子病历和报告的信息识别抽取和结构化管理对临床诊断、疾病预防与医学研究具有重要意义。


   体检报告识别可以帮助医务服务人员自动识别录入用户征信信息,节约人力成本、提升服务效率,实现降本增效,具有重要实际意义。基于PaddleOCR已在文字识别领域取得优秀成果,本项目基于PaddleOCR实现体检报告检测与识别,对数据进行结构化处理,结合CV+NLP技术达到一定识别精度,未来推广应用场景可以基于识别信息做个性化疾病预测与健康推荐。


二、项目链接

PaddleOCR体检报告识别 - 飞桨AI Studio


三、项目流程

PaddleOCR是百度开源的超轻量级OCR模型库,本文使用其框架进行体检报告识别,本次项目具体流程包括:


PaddleOCR环境安装与快速预测

体检报告检测模型训练det

体检报告识别模型训练rec


四、技术介绍

针对PaddleOCR提供的算法模型,本次选择基础模型用于体检报告识别与检测,流程如下:

image.png


1.检测:DB算法

image.png


文字检测参考这篇:

OCR文字识别技术总结(三)__文本检测算法总结


2.识别:CRNN+CTC

CRNN可参考这篇文章:

CRNN文字识别_GoAI的博客-CSDN博客_crnn


目录
相关文章
|
8月前
|
监控 安全 自动驾驶
基于python的室内老人实时摔倒智能监测系统-跌倒检测系统(康复训练检测+代码)
基于python的室内老人实时摔倒智能监测系统-跌倒检测系统(康复训练检测+代码)
|
3月前
|
机器学习/深度学习 人工智能 算法
基于YOLOV8的口罩佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
本文介绍了基于YOLOv8算法的口罩佩戴实时检测系统,该系统通过7959张训练图片训练出有效识别模型,开发了带GUI界面的系统,支持图片、视频和摄像头实时检测口罩佩戴情况,提高疫情防控效率。
132 3
基于YOLOV8的口罩佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
3月前
|
人工智能 算法 安全
基于YOLOv8的交通车辆实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的交通车辆实时检测系统,使用5830张图片训练出有效模型,开发了Python和Pyside6的GUI界面系统,支持图片、视频和摄像头实时检测,具备模型权重导入、检测置信度调节等功能,旨在提升道路安全和改善交通管理。
91 1
基于YOLOv8的交通车辆实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
3月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的人员抽烟实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的人员抽烟实时检测系统,旨在通过2472张图片训练出有效模型,维护无烟环境,预防火灾,保护公众健康。系统支持图片、视频和摄像头检测,具备GUI界面,易于操作。使用Python和Pyside6开发,具备模型权重导入、检测置信度调节等功能。
87 1
基于YOLOv8的人员抽烟实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
3月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的工业安全帽实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的工业安全帽实时检测系统,通过7581张图片训练,实现工作场所安全帽佩戴检测,降低工伤事故。系统支持图片、视频和摄像头实时检测,具备GUI界面,易于操作。使用Python和Pyside6开发,提供模型训练、评估和推理功能。
182 1
基于YOLOv8的工业安全帽实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
3月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的钢铁缺陷实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的钢铁缺陷实时检测系统,通过1800张图片训练,开发了带GUI界面的检测系统,支持图片、视频和摄像头实时检测,提高生产效率和产品质量。系统基于Python和Pyside6开发,具备模型权重导入、检测置信度调节等功能。项目代码、数据集可通过特定链接获取。
89 1
基于YOLOv8的钢铁缺陷实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
3月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的人员跌倒实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
本文介绍了基于YOLOv8算法的人员跌倒实时检测系统,通过4978张图片训练出有效模型,并开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备更换背景、标题,调节检测置信度等功能。
135 0
基于YOLOv8的人员跌倒实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
4月前
|
机器学习/深度学习 编解码 数据挖掘
Sentieon 应用教程 | 使用CNVscope进行CNV检测分析
CNVscope是Sentieon推出的一款基于机器学习的全基因组CNV分析检测模块。该模块主要用于检测大于5kb的拷贝数增加或缺失,方法是通过分析reads的深度信息,并结合断点检测等其他特征进行拷贝数判断。
42 1
|
5月前
|
人工智能 数据处理
AI识别检验报告 -PaddleNLP UIE-X 在医疗领域的实战
AI识别检验报告 -PaddleNLP UIE-X 在医疗领域的实战
155 0
|
7月前
|
机器学习/深度学习 算法 安全
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入