Sentieon 应用教程 | 使用CNVscope进行CNV检测分析

简介: CNVscope是Sentieon推出的一款基于机器学习的全基因组CNV分析检测模块。该模块主要用于检测大于5kb的拷贝数增加或缺失,方法是通过分析reads的深度信息,并结合断点检测等其他特征进行拷贝数判断。

背景介绍

CNV检测已成为全基因组分析的常规内容,并显著提升了阳性诊断率。然而,由于实验室水平和所使用软件的差异,目前仍难以全面、准确地覆盖CNV的检测与细节分析。尤其在数据分析环节,目前尚无开源软件能够在性能优越的同时,全面解决这一问题。以流行的CNVnator为例,这是一款基于Read Depth(RD)原理的拷贝数变异检测软件,主要用于全基因组数据分析。CNVnator不仅能在人群中进行拷贝数变异检测和基因分型,还能根据需求鉴定一些非典型CNV。

微信图片_20240830180121.jpg

总体而言,CNVnator具备较高的灵敏度、较低的错误发现率、并且其断点检测分辨率较高。然而,作为一款经典软件,CNVnator在应对现今多平台测序数据和新一代参考基因组等最新数据类型时,已表现出一定的局限性。

1.适用场景

CNVscope是Sentieon推出的一款基于机器学习的全基因组CNV分析检测模块。该模块主要用于检测大于5kb的拷贝数增加或缺失,方法是通过分析reads的深度信息,并结合断点检测等其他特征进行拷贝数判断。

2.环境必备

3.分析流程

运行两个独立的命令来进行 CNV 检测和应用机器学习模型。输入的BAM文件应该来自已经完成比对和去重复的流程。

sentieon driver -t NUMBER_THREADS -r REFERENCE -i DEDUPED_BAM \ --algo CNVscope --model SentieonIlluminaWGS2.2.bundle/cnv.model TMP_VARIANT_VCF

sentieon driver -t NUMBER_THREADS -r REFERENCE --algo CNVModelApply \ --model SentieonIlluminaWGS2.2.bundle/cnv.model -v TMP_VARIANT_VCF VARIANT_VCF

注意:使用同一个模型进行CNVscope和CNVModelApply操作很重要,如果使用不同的模型,CNVModelApply计算会报错。

4.参数说明

以下是输入参数说明:

  • NUMBER_THREADS:计算中将使用的计算机线程数。我们建议该数量不要超过您系统中可用的计算核心数。
  • REFERENCE:参考FASTA文件的位置。您应确保该参考与映射阶段使用的参考相同。
  • DEDUPED_BAM:输入BAM文件的位置。
  • TMP_VARIANT_VCF:CNVscope变异调用输出的位置和文件名。这是一个临时文件。
  • VARIANT_VCF:变异调用输出的位置和文件名。将创建一个相应的索引文件。该工具将使用.gz扩展名输出压缩文件。

5.结果说明

最终输出的VCF文件使用CN注释来表示CNVscope机器学习模型调用的每个区域的拷贝数状态。CNVscope调用的可能拷贝数状态从0到4,其中CN=4表示拷贝数状态等于或大于4。

附录:研发细节

在CNVscope的开发过程中,建立新一代的CNV真集用于训练和测试是最为关键的一步。目前常用的CNV真值集主要来自GIAB的HG002项目和千人基因组计划。然而,由于这些真值集依赖于早期的短读长技术,特别是在低复杂度区域的准确性存在一定问题。

随着测序技术的进步,尤其是长读长测序的发展,使得染色体级别的全基因组组装成为可能。例如,HG002 T2T(端到端)联盟最近宣布完成了HG002所有46条染色体的完整组装,使得样本的结构变异(SV)表征更加准确。同样,Human Pangenome Reference Consortium(人类泛基因组参考联盟)也发布了多个高质量的组装结果,为业内研究者开发最新的分析工具提供了基础。

Sentieon团队在此次开发中,主要采用了最新的HG002 T2T真集以及泛基因组项目中的15个样本。这些真集利用了第三代测序数据,大大提升了结构变异检测的准确性。我们从这些真集中提取了超过5kb的DUP(重复)和DEL(缺失)变异,作为CNVscope开发的真集数据。其中,11个图形基因组样本作为训练集,其余4个样本和T2T数据作为测试集。所有数据均来自约30x深度的全基因组测序。

Image.jpg

为展示准确度,我们将CNVscope与先前提到的CNVnator (v0.4.1) 和Illumina开发的DRAGEN CNV (v4.2) 在不同数据集上进行了逐一对比。

Image (1).jpg

图1 拷贝数重复事件


Image (2).jpg

图2 拷贝数缺失事件

从结果来看,Sentieon CNVscope 在WGS中的表现相较于现有的CNV工具,展现出极高的准确性(F1值)。目前,CNVscope正处于持续迭代阶段,当前主要聚焦于检测大于5kb的胚系WGS事件,而小于5kb的复制和缺失则由DNAscope的结构变异检测模块处理。

未来,CNVscope还将推出适用于外显子组测序(WES)数据和体细胞CNV的分析流程

目录
相关文章
非华为笔记本安装华为电脑管家
非华为笔记本安装华为电脑管家
|
Ubuntu Linux Shell
Sentieon软件快速入门指南
Sentieon为纯CPU计算加速软件,完全适配主流CPU计算架构:Intel、AMD、海光等X86架构CPU,华为鲲鹏、阿里倚天等ARM架构CPU。可灵活部署在实验室单机工作站、HPC集群、超算中心和云计算中心,保持同一套流程下不同规模数据计算结果的一致性。Sentieon软件团队拥有丰富的软件开发及算法优化工程经验,致力于解决生物数据分析中的速度与准确度瓶颈,为来自于分子诊断、药物研发、临床医疗、人群队列、动植物等多个领域的合作伙伴提供高效精准的软件解决方案,共同推动基因技术的发展。
652 4
Sentieon软件快速入门指南
|
11月前
|
人工智能 PyTorch API
Hunyuan3D 2.0:腾讯混元开源3D生成大模型!图生/文生秒建高精度模型,细节纹理自动合成
Hunyuan3D 2.0 是腾讯推出的大规模 3D 资产生成系统,专注于从文本和图像生成高分辨率的 3D 模型,支持几何生成和纹理合成。
1382 5
Hunyuan3D 2.0:腾讯混元开源3D生成大模型!图生/文生秒建高精度模型,细节纹理自动合成
|
IDE Java Maven
排查maven 冲突及解决方式
【9月更文挑战第25天】在开发过程中,Maven 冲突可能导致多种问题。本文介绍排查方法:查看错误日志中的提示信息;使用 `mvn dependency:tree` 命令检查依赖树;利用 IDE 工具进行依赖分析。解决冲突的方式包括:排除依赖、手动指定版本、更新依赖以及使用 Maven 插件如 Maven Enforcer Plugin 强制依赖一致性。处理时需确保项目稳定与兼容。
1588 2
|
存储 大数据 数据处理
大数据环境下的性能优化策略
大数据环境下的性能优化策略
530 2
|
数据采集 异构计算
实验室自用LabVIEW软件与商用软件价格差异分析
实验室自用LabVIEW软件与商用软件价格差异分析
317 2
|
索引
力扣(LeetCode)数据结构练习题(3)------链表
力扣(LeetCode)数据结构练习题(3)------链表
300 0
|
消息中间件 搜索推荐 Java
消息中间件JMS介绍、入门demo与spring整合
消息中间件JMS介绍、入门demo与spring整合
619 78
消息中间件JMS介绍、入门demo与spring整合
|
弹性计算 安全 前端开发
阿里云服务器ECS通用型、计算型和内存实例区别、CPU型号、性能参数表
阿里云ECS实例有计算型(c)、通用型(g)和内存型(r)系列,区别在于CPU内存比。计算型1:2,如2核4G;通用型1:4,如2核8G;内存型1:8,如2核16G。实例有第五代至第八代,如c7、g5、r8a等,每代CPU型号和主频提升。例如,c7使用Intel Ice Lake,g7支持虚拟化Enclave。实例性能参数包括网络带宽、收发包能力、IOPS等,适合不同场景,如视频处理、游戏、数据库等
971 0
|
机器学习/深度学习 自然语言处理 搜索推荐
常用的相似度度量总结:余弦相似度,点积,L1,L2
相似性度量在机器学习中起着至关重要的作用。这些度量以数学方式量化对象、数据点或向量之间的相似性。理解向量空间中的相似性概念并采用适当的度量是解决广泛的现实世界问题的基础。本文将介绍几种常用的用来计算两个向量在嵌入空间中的接近程度的相似性度量。
1471 1