基于python的室内老人实时摔倒智能监测系统-跌倒检测系统(康复训练检测+代码)

简介: 基于python的室内老人实时摔倒智能监测系统-跌倒检测系统(康复训练检测+代码)

概述

  • 导入所需的库,包括cv2、和numpy
  • 定义了一个用于计算角度的函数calculate_angle(a, b, c),其中a、b和c是三个关键点的坐标。
  • 初始化姿态检测和绘图工具。
  • 打开并读取视频文件。

-摔倒检测(fallen)

  • 循环遍历视频的每一帧: a. 将帧转换为RGB格式。 b. 使用MediaPipe进行姿态检测,得到结果。 c.
    将帧重新转换为BGR格式。 d. 从结果中提取关键点的坐标。 e. 调用calculate_angle函数计算角度。
  • 该代码的研究原理是利用姿态识别技术来检测人体的关键点,并根据这些关键点的位置计算出特定关节的角度。在这段代码中,使用了姿态检测功能来获取人体的关键点坐标。然后,根据关键点的位置,计算出左眼、左髋、左脚跟、右眼、右髋、右脚跟、右手食指、左手食指之间的角度。


抬手检测

• 1

angle1 = calculate_angle(left_eye, left_hip, left_heel)

angle2 = calculate_angle(right_eye, right_hip, right_heel)


            
            # Visualize angle
            cv2.putText(image, str(angle1), 
                           tuple(np.multiply(left_hip, [640, 480]).astype(int)), 
                           cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
                                )
            cv2.putText(image, str(angle2), 
                           tuple(np.multiply(right_hip, [640, 480]).astype(int)), 
                           cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
                                )
            print(f"left_eye={left_eye}")
            print(f"right_eye={right_eye}")
            
            print(f"left_hip={left_hip}")
            print(f"right_hip={right_hip}")

            print(f"left_heel={left_heel}")
            print(f"right_heel={right_heel}")

            print(f"right index={right_index}")
            print(f"left index={left_index}")

            if ((left_eye[0]>=0.41 and left_eye[0]<=0.43) and (left_hip[0]>=0.44 and left_hip[0]<=0.46) and (left_heel[0]>=0.41 and left_heel[0]<=0.43) or (right_eye[0]>=0.41 and right_eye[0]<=0.43) and (right_hip[0]<=0.43 and right_hip[0]>=0.41) and (right_heel[0]>=0.37 and right_heel[0]<=0.39)):

                if ((left_eye[1]>=0.24 and left_eye[1]<=0.33) and (left_hip[1]<=0.35 and left_hip[1]>=0.45) and (left_heel[1]<=0.74 and left_heel[1]>=0.72) or (right_eye[1]<=0.30 and right_eye[1]>=0.24) and (right_hip[1]<=0.50 and right_hip[1]>=0.32) and (right_heel[1]>=0.71 and right_heel[0]<=0.73)):
                    stage = "safe :)"
            # Curl counter logic
            else:
                if angle1 != angle2 and (angle1>170 and angle2>170):
                    if (((right_index[0]<0.70 and right_index[0]>0.20) and (right_index[1]<0.56 and right_index[1]>0.15)) or ((left_index[0]<0.55 and left_index[0]>0.18) and (left_index[1]<0.56 and left_index[1]>0.15))):
                        stage="Hanging on !!"
                    else:
                        stage = "fallen :("    

                elif angle1 != angle2 and (angle1<140 or angle2<140) :
                    stage = "Trying to Walk"
                elif angle1!=angle2 and ((angle1<168 and angle1>140) and (angle2<168 and angle2>140)):
                    stage="Barely Walking"
                else:
                    pass

这段代码可以用于识别人体的摔倒动作。通过检测特定角度的变化,可以判断人体是否发生了摔倒行为。例如,当角度超过一定阈值时,可以认定为摔倒,并进行相应的处理操作。


需要注意的是,该段代码仅提供了角度计算的基础框架,具体的摔倒检测算法需要根据实际需求进行进一步的开发和优化


接下来,进入一个循环,不断读取视频的每一帧。在每一帧中,首先通过cv2.cvtColor函数将图像从BGR格式转换为RGB格式,因为mediapipe库需要RGB格式的图像进行处理。然后,将图像的可写属性设置为False,确保图像数据不可更改。

结果展示

摔倒时

接下来,从结果对象中提取姿态关键点的坐标。通过属性可以获取到每个关键点的坐标,例如左眼、左髋、左脚跟、右眼、右髋、右脚跟、右手食指和左手食指等。

正常安全状态时

最后,在获取到关键点坐标之后,调用calculate_angle函数计算特定关节之间的角度。这些关节包括左眼、左髋、左脚跟、右眼、右髋、右脚跟、右手食指和左手食指。


通过检测特定角度的变化,可以判断人体是否发生了摔倒行为。例如,当角度超过一定阈值时,可以认定为摔倒,并进行相应的处理操作。摔倒检测是一个重要的研究领域,可以应用于老年人护理、安全监控等领域。


正常行走状态时

应用领域

摔倒检测技术在多个领域都有应用的潜力。以下是一些可能的应用领域:


  1. 老年人照护:老年人摔倒是导致伤害和事故的主要原因之一。通过使用摔倒检测技术,可以实时监测老年人的姿态并及时发现是否发生了摔倒事件。一旦检测到摔倒,系统可以自动触发警报、通知护理人员或紧急救援服务。
  2. 安全监控:在公共场所、工业领域和建筑工地等环境中,摔倒检测技术可以用于监测员工、访客或工人的安全。一旦检测到摔倒,系统可以立即发出警报,以便采取必要的紧急措施。
  3. 运动训练:在体育训练和康复治疗中,摔倒检测技术可以帮助教练或治疗师监测运动员或患者的姿势和动作。通过实时检测和反馈,可以改善运动技能、预防运动损伤,并提高康复治疗的效果。
  4. 虚拟现实:在虚拟现实(VR)和增强现实(AR)应用中,摔倒检测技术可以用于更加真实和沉浸的用户体验。通过监测用户的姿态和动作,系统可以相应地调整虚拟世界的呈现,以提供更加逼真和交互性的体验。
  5. 自动驾驶汽车:在自动驾驶汽车领域,摔倒检测技术可以用于监测乘客或驾驶员的状态。一旦检测到乘客或驾驶员发生摔倒,系统可以自动采取措施,如停车、呼叫急救等,以确保安全。


这些应用领域只是摔倒检测技术潜在应用的一部分。随着技术的不断发展和创新,摔倒检测技术可能在更多领域得到应用,并为人们的生活带来更多便利和安全。

相关文章
|
4天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
30 5
|
5天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
8天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
4天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
13 1
|
5天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
6天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
21 2
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
25 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
5天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
18 2
|
7天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
22 2