推荐系统-Task03离线物料系统的构建

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 Tair(兼容Redis),内存型 2GB
简介: 新闻物料爬取:主要采用scrapy爬虫工具,在每天晚上23点将当天的新闻内容从网页中进行抓取,存入MongoDB的SinaNews数据库中。

5e45f2c7a280e0ba81a1e1590e71e688_watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAR29BbOeahOWNmuWuog==,size_20,color_FFFFFF,t_70,g_se,x_16.png

离线系统基本内容:


新闻物料爬取:主要采用scrapy爬虫工具,在每天晚上23点将当天的新闻内容从网页中进行抓取,存入MongoDB的SinaNews数据库中。

物料画像构建:更新当天新闻动态画像,将用户对前一天新闻的交互,包括阅读、点赞和收藏等行为(动态)存入Redis中;对物料画像处理,将新闻静态和动态数据分别存入对应的Redis中。

用户画像构建:用户通过前端注册页面,进行用户注册,将用户信息存入MySQL的用户注册信息表(register_user)中;用户通过阅读、点赞及收藏新闻,将用户行为数据存入MySQL的用户阅读信息表(user_read)、用户点赞信息表(user_likes)和用户收藏信息表(user_collections);将当天的新注册用户基本信息及其行为数据构造用户画像,存入MongoDB中的UserProtrai集合中。

自动化构建画像:将物料画像构建和用户画像构建进行整合,构建整个自动化流程。


项目结构:


物料画像的构建

文件目录

├── material_process
│   ├── log_process.py
│   ├── news_protrait.py
│   ├── news_to_redis.py
│   └── utils.py
├── process_material.py
└── update_redis.py

物料画像构建流程

运行process_material.py会自动构建物料画像然后存储到数据库中。


将今天爬取的数据构造画像存入画像数据库(MongoDB)中,包含:ews_id,title,raw_key_words,manual_key_words,ctime,content,cate,url,

动态画像初始值(likes,collections,read_num,hot_value)

每天都需要将新闻详情更新到redis中,并且将前一天的redis数据删掉

用redis的动态画像更新mongodb的画像,将mongodb中对应的动态画像更新

用户画像数据构建

文件目录

├── process_user.py
├── update_redis.py
└── user_process
    ├── user_protrail.py
    └── user_to_mysql.py

用户画像数据构建流程

运行process_user.py 会自动将用户的曝光数据从redis落到mysql中,并且更新用户画像


用户曝光数据user_id,news_list保存到mongodb

每天都需要将当天注册的用户添加到用户画像池中

获取用户历史行为的统计特征进行用户画像数据更新(弃用)

├── process_material.py
├── process_user.py
├── update_redis.py
└── user_process
    ├── user_protrail.py
    └── user_to_mysql.py


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
6月前
|
机器学习/深度学习 搜索推荐 算法
构建推荐系统:Python 与机器学习
推荐系统是一种利用机器学习算法和用户的历史行为数据来预测用户可能感兴趣的内容的技术。在当今的数字化时代,推荐系统已经成为许多互联网应用的核心组件,如电子商务、社交媒体和在线娱乐等。在 Python 中,我们可以使用各种机器学习库和工具来构建和实现推荐系统。
|
6月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
425 0
|
7天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
20 1
|
2月前
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
84 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
6月前
|
机器学习/深度学习 数据采集 人工智能
构建一个基于AI的推荐系统的技术探索
【5月更文挑战第23天】本文探讨了构建基于AI的推荐系统的关键技术,包括数据收集、预处理、特征工程、推荐算法(如协同过滤、内容过滤、深度学习)及结果评估。通过理解用户行为和偏好,推荐系统能提供个性化建议。实现步骤涉及确定业务需求、设计数据方案、预处理、算法选择、评估优化及系统部署。随着技术进步,未来推荐系统将更加智能。
|
3月前
|
机器学习/深度学习 搜索推荐 数据可视化
【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题二
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛C题的解决方案,重点讲解了如何构建招聘与求职双向推荐系统的建模过程和Python代码实现,并对招聘信息和求职者信息进行了详细分析和画像构建。
75 1
|
3月前
|
存储 人工智能 搜索推荐
【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 27页论文及实现代码
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛C题的解决方案,详细阐述了如何构建泰迪内推平台的招聘与求职双向推荐系统,包括数据收集、分析、画像构建、岗位匹配度和求职者满意度模型的建立,以及履约率最优化的推荐模型,提供了27页的论文和实现代码。
73 0
【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 27页论文及实现代码
|
4月前
|
存储 搜索推荐 算法
`surprise`是一个用于构建和分析推荐系统的Python库。
`surprise`是一个用于构建和分析推荐系统的Python库。
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
构建基于AI的个性化新闻推荐系统:技术探索与实践
【6月更文挑战第5天】构建基于AI的个性化新闻推荐系统,通过数据预处理、用户画像构建、特征提取、推荐算法设计及结果评估优化,解决信息爆炸时代用户筛选新闻的难题。系统关键点包括:数据清洗、用户兴趣分析、表示学习、内容及协同过滤推荐。实践案例证明,结合深度学习的推荐系统能提升用户体验,未来系统将更智能、个性化。
|
4月前
|
算法 搜索推荐
推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流
推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流

热门文章

最新文章