【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 27页论文及实现代码

简介: 本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛C题的解决方案,详细阐述了如何构建泰迪内推平台的招聘与求职双向推荐系统,包括数据收集、分析、画像构建、岗位匹配度和求职者满意度模型的建立,以及履约率最优化的推荐模型,提供了27页的论文和实现代码。

在这里插入图片描述

【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 27页论文及实现代码

相关链接

(1)建模方案

【2023年第十一届泰迪杯数据挖掘挑战赛】C题泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题一

【2023年第十一届泰迪杯数据挖掘挑战赛】C题泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题二

【2023年第十一届泰迪杯数据挖掘挑战赛】C题泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题三

(2)相关赛题论文

【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码

【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码

【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 27页论文及实现代码

1 题目

一、问题背景

在新时代背景下,随着大学生毕业人数不断增加,大学生求职问题已成为广泛关注的社 会热点。而且受疫情影响,诸多企业的招聘都改为线上进行,脱离时间和空间的限制,招聘 需求不断上涨,有近六成企业招聘需求增加,其中需求量较大的科技研发、数字化、蓝领技 能岗位都存在不同程度的人才短缺。但从人才供给来看,应届生数量增加,2022 年高校毕 业生达到创纪录的 1076 万人,而且部分企业校招开展暂缓或推迟,因此出现校招需求缩减 或冻结,这些因素都加剧了应届生就业的严峻形势。基于种种因素,出现就业竞争压力大、 招聘与求职信息不对称等现象。

泰迪内推平台是聚焦于“大数据+”和“人工智能“领域的求职招聘网站,该平台融合了多家企业发布的招聘信息,同时平台也为求职者提供求职信息的展示。为缓解毕业生就业 压力,同时满足企业对人才的需求,泰迪内推平台会定期为高校学生提供优质岗位推荐,解 决毕业生就业的同时也缓解企业用人难的问题,为校企之间搭建起资源互换的桥梁,力求实 现人才的供需对接和教育资源转化,通过深化产教融合,促进教育链、人才链、产业链与创 新链有机衔接。

因此,对招聘信息进行分析研究,了解不同职业领域的需求特点,挖掘兴起的数据类行 业相应的人才需求现状及发展趋势,为广大求职者提供正确的就业指导有着重要意义。

二、解决问题

1.招聘信息爬取

从泰迪内推平台的“找工作“页面和“找人才”页面,爬取所有招聘与求职信息并整理,依据招聘信息ID记录每条招聘信息并保存为“result1 - 1.csv”文件,求职信息则依据求职者ID记录并保存为“result1-2.csv”文件,涉及的招聘信息ID和求职者ID均来自网址路径后端的数字串,如图1所示。(模板文件见附件1中的CSV文件)

在这里插入图片描述

1 某招聘信息网页

2.招聘与求职信息分析

应用问题 1 的招聘信息与求职信息构建画像:根据采集的企业招聘信息,从招聘岗位、 学历要求、岗位需求量、公司类型、薪资待遇、岗位技能、企业工作地点等多个方向建立招 聘信息画像;根据采集求职者求职信息,从预期岗位、薪资需求、知识储备、学历、工作经 验等多个方向建立求职者画像。

3.构建岗位匹配度和求职者满意度的模型

在招聘和求职过程中,企业面对多位优质求职者,将会考虑求职者能力要求、技能掌握 等多方面,岗位匹配度是体现求职者满足企业招聘要求的匹配程度;同样,求职者对于多种 招聘信息,也会依据自身条件和要求,选取符合自己心意的岗位,因此求职者满意度指标可 客观体现求职者对企业招聘岗位的满意程度。对于不满足岗位最低要求的求职者,企业可定 义其岗位匹配度为 0。同样,对于不满足求职者最低要求的岗位,求职者可定义其求职者满 意度为 0。

根据问题2的招聘信息与求职者信息,构建岗位匹配度和求职者满意度的模型,基于该模型,为每条招聘信息提供岗位匹配度非0的求职者,将结果进行降序排序存放在“resul3 - 1. csv”文件中,以及为每位求职者提供求职者满意度非0的招聘信息,将结果进行降序排序存放在“result3 - 2. csv”文件中。(模板文件见附件1中的CSV文件)

4.招聘求职双向推荐模型

假设招聘流程如下:设某岗位拟聘人,泰迪内推平台向企业推荐岗位匹配度非0的n位求职者发出第一轮报价,求职者如果收到多于1个岗位的报价,则求职者选取满意度最高的岗位签约,每个求职者只允许选择1个岗位签了约。第一轮结束后,平台根据当前各招聘信息的剩余岗位数,向后续被推荐求职者发出第二轮报价,如此继续,直到招聘人数已满或者向所有拟推荐求职者均已发出提供为止。

在上述招聘流程中,由于条件优秀的岗位求职者都愿意去,而条件优秀的求职者各岗位 都愿意录用,很难做到履约率达到百分之百,因此履约率高低是评价平台的推荐系统优劣的 重要指标。这里的履约率定义为:

履约率=所有岗位的签约人数之和/所有拟聘岗位人数之和

请为平台设计招聘求职双向推荐模型,使得履约率指标达到最高。并将招聘岗位与求职者签约成功的结果存放在“resul4.csv”文件中。

三、附件说明

附件1是问题1,问题3和问题4的模板文件,文件均为csv文件,采用ANSI编码。Result1-1.csv:从泰迪内推平台爬取的招聘信息,文件参考表1格式。

在这里插入图片描述

Result1-2.csv:从泰迪内推平台爬取的求职信息,文件参考表2格式。表2 result1-2.csv样例.

在这里插入图片描述

result3 - 1. - csv:该文档存储每条招聘信息中岗位匹配度非0的求职者,需将结果进行降序排序,具体字段名和样例见表3。

在这里插入图片描述

result3 - 2. - csv:该文档存储每位求职者满意度非0的招聘信息,需将结果进行降序排序,具体字段名和样例见表4。

在这里插入图片描述

result4.csv:根据履约率最高的模型,提供招聘岗位签约成功后的求职者ID。该结果需对招聘信息ID进行排序,并对每个招聘信息的数据按岗位匹配度降序排序,具体字段名和样例见表5。

在这里插入图片描述

2 论文介绍

本篇数学建模论文旨在设计一个招聘求职双向推荐模型,通过匹配招聘信息和求职者信息,实现高履约率的招聘结果。

第一部分为问题一和问题二,分别是数据收集和数据分析。我们从泰迪内推平台的“找工作”和“找人才”页面上获取所有的招聘和求职信息,并将信息保存为CSV文件。针对这些信息,我们分别构建招聘信息画像和求职者画像,并基于这些画像建立岗位匹配度和求职者满意度的模型。根据该模型,我们为每条招聘信息提供岗位匹配度非零的求职者,并为每位求职者提供求职者满意度非零的招聘信息。

问题三则是本篇论文的重点。根据上述招聘流程,我们面临一个复杂的决策问题:如何推荐岗位给求职者,使得平台的履约率最高。我们提出了一个基于内容匹配的推荐模型,既考虑了求职者的匹配度也考虑了求职者的满意度。我们将根据上述模型实现以下步骤:

1.根据招聘信息和求职者信息,计算岗位匹配度和求职者满意度指标。
2.向优质求职者发出第一轮报价,并根据求职者选择最满意的岗位签约,每个求职者只允许选择一个岗位签了约。
3.根据当前各招聘信息的剩余岗位数,向后续被推荐求职者发出第二轮报价,如此继续,直到招聘人数已满或者向所有拟推荐求职者均已发出提供为止。
4.计算履约率,将招聘岗位与求职者签约成功的结果存放在“result4.csv”文件中。

关于模型的实现,我们考虑采用以下步骤:

1.首先,我们需要将招聘信息和求职者信息转换为特征向量。我们可以使用词袋模型将文本数据转换为向量。根据招聘信息和求职者信息构建相应的特征矩阵。
2.计算岗位匹配度。我们将招聘信息的特征向量与求职者信息的特征向量进行点乘运算,得到一组岗位匹配度指标。
3.计算求职者满意度。我们将求职者信息的特征向量与招聘信息的特征向量进行点乘运算,得到一组求职者满意度指标。
4.根据岗位匹配度和求职者满意度指标,对求职者进行排序。将求职者按照匹配度和满意度的综合得分进行排序。
5.向优质求职者发出第一轮报价,并根据求职者选择最满意的岗位签约,每个求职者只允许选择一个岗位签了约。
6.根据当前各招聘信息的剩余岗位数,向后续被推荐求职者发出第二轮报价,如此继续,直到招聘人数已满或者向所有拟推荐求职者均已发出提供为止。
7.计算履约率。根据签约成功的岗位数和求职者数计算履约率,并将招聘岗位与求职者签约成功的结果存放在“result4.csv”文件中。

在模型实现过程中,我们可以通过网格搜索和交叉验证等方法对模型进行调参,以优化模型的性能和准确度。

综上所述,本篇论文提出了一个基于内容匹配的推荐模型,旨在实现高履约率的招聘结果。我们在问题一和问题二中进行了数据收集和数据分析,针对问题三提出了具体的模型实现方法,以达到高履约率的目的。
在这里插入图片描述

3 获取方式

电脑浏览器打开

betterbench.top/#/74/detail

目录
相关文章
|
5月前
|
搜索推荐 数据可视化 数据挖掘
基于Python flask框架的招聘数据分析推荐系统,有数据推荐和可视化功能
本文介绍了一个基于Python Flask框架的招聘数据分析推荐系统,该系统具备用户登录注册、数据库连接查询、首页推荐、职位与城市分析、公司性质分析、职位需求分析、用户信息管理以及数据可视化等功能,旨在提高求职者的就业效率和满意度,同时为企业提供人才匹配和招聘效果评估手段。
169 0
基于Python flask框架的招聘数据分析推荐系统,有数据推荐和可视化功能
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
154 1
|
3月前
|
机器学习/深度学习 监控 搜索推荐
电商平台如何精准抓住你的心?揭秘大数据背后的神秘推荐系统!
【10月更文挑战第12天】在信息爆炸时代,数据驱动决策成为企业优化决策的关键方法。本文以某大型电商平台的商品推荐系统为例,介绍其通过收集用户行为数据,经过预处理、特征工程、模型选择与训练、评估优化及部署监控等步骤,实现个性化商品推荐,提升用户体验和销售额的过程。
149 1
|
5月前
|
机器学习/深度学习 搜索推荐 数据可视化
【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题二
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛C题的解决方案,重点讲解了如何构建招聘与求职双向推荐系统的建模过程和Python代码实现,并对招聘信息和求职者信息进行了详细分析和画像构建。
98 1
|
6月前
|
存储 搜索推荐 算法
`surprise`是一个用于构建和分析推荐系统的Python库。
`surprise`是一个用于构建和分析推荐系统的Python库。
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
构建基于AI的个性化新闻推荐系统:技术探索与实践
【6月更文挑战第5天】构建基于AI的个性化新闻推荐系统,通过数据预处理、用户画像构建、特征提取、推荐算法设计及结果评估优化,解决信息爆炸时代用户筛选新闻的难题。系统关键点包括:数据清洗、用户兴趣分析、表示学习、内容及协同过滤推荐。实践案例证明,结合深度学习的推荐系统能提升用户体验,未来系统将更智能、个性化。
|
6月前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp小程序的招聘信息推荐系统附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp小程序的招聘信息推荐系统附带文章源码部署视频讲解等
42 0
|
6月前
|
算法 搜索推荐
推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流
推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流
|
5月前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
221 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
|
7月前
|
搜索推荐 算法 小程序
基于Java协同过滤算法的电影推荐系统设计和实现(源码+LW+调试文档+讲解等)
基于Java协同过滤算法的电影推荐系统设计和实现(源码+LW+调试文档+讲解等)

热门文章

最新文章